用于智能传感和可穿戴清洁能源应用的有机/无机混合材料

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2023-09-28 DOI:10.1007/s42114-023-00751-z
Xiaotong Zhao, Yinxiao Du, Wei Li, Zebi Zhao, Ming Lei
{"title":"用于智能传感和可穿戴清洁能源应用的有机/无机混合材料","authors":"Xiaotong Zhao,&nbsp;Yinxiao Du,&nbsp;Wei Li,&nbsp;Zebi Zhao,&nbsp;Ming Lei","doi":"10.1007/s42114-023-00751-z","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of wearable electronics and the advent of the Internet of Things (IoT) era, it is imperative to research and explore the basic components to meet the application scenarios. In particular, it is becoming increasingly difficult to impart suitable properties to individual materials and realize appropriate physical dimensions in order to satisfy increasing demands of multifunctionality for fundamental studies, device designs, and performance optimization. Therefore, these challenges and opportunities can be addressed by designing (optical) electronic and energy devices with unique functionality and versatility through the combined advantages of multidimensional integration or hybridization of inorganic semiconductors, especially inorganic two-dimensional semiconductor materials, with various types of organic materials with potentially novel functions and unique properties. Herein, a comprehensive review of emerging integration or hybridization of inorganic semiconductor materials with organic materials from their individual components, and assembly fabrication to their state-of-the-art electronic, optoelectronic, magnetic, and energy applications is presented. Future opportunities and challenges associated with these organic/inorganic hybrids are highlighted.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"6 5","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-023-00751-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Organic/inorganic hybrids for intelligent sensing and wearable clean energy applications\",\"authors\":\"Xiaotong Zhao,&nbsp;Yinxiao Du,&nbsp;Wei Li,&nbsp;Zebi Zhao,&nbsp;Ming Lei\",\"doi\":\"10.1007/s42114-023-00751-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid development of wearable electronics and the advent of the Internet of Things (IoT) era, it is imperative to research and explore the basic components to meet the application scenarios. In particular, it is becoming increasingly difficult to impart suitable properties to individual materials and realize appropriate physical dimensions in order to satisfy increasing demands of multifunctionality for fundamental studies, device designs, and performance optimization. Therefore, these challenges and opportunities can be addressed by designing (optical) electronic and energy devices with unique functionality and versatility through the combined advantages of multidimensional integration or hybridization of inorganic semiconductors, especially inorganic two-dimensional semiconductor materials, with various types of organic materials with potentially novel functions and unique properties. Herein, a comprehensive review of emerging integration or hybridization of inorganic semiconductor materials with organic materials from their individual components, and assembly fabrication to their state-of-the-art electronic, optoelectronic, magnetic, and energy applications is presented. Future opportunities and challenges associated with these organic/inorganic hybrids are highlighted.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"6 5\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42114-023-00751-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-023-00751-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-023-00751-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

随着可穿戴电子的快速发展和物联网时代的到来,研究和探索满足应用场景的基本组件势在必行。特别是,为了满足基础研究、器件设计和性能优化对多功能性的日益增长的需求,给单个材料赋予合适的性能并实现合适的物理尺寸变得越来越困难。因此,这些挑战和机遇可以通过设计具有独特功能和多功能性的(光学)电子和能源设备来解决,通过无机半导体,特别是无机二维半导体材料的多维集成或杂交的组合优势,具有各种类型的具有潜在新颖功能和独特性质的有机材料。本文对无机半导体材料与有机材料的新兴集成或杂交进行了全面综述,从其单个组件、组件制造到其最先进的电子、光电、磁性和能源应用。强调了与这些有机/无机杂化物相关的未来机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic/inorganic hybrids for intelligent sensing and wearable clean energy applications

With the rapid development of wearable electronics and the advent of the Internet of Things (IoT) era, it is imperative to research and explore the basic components to meet the application scenarios. In particular, it is becoming increasingly difficult to impart suitable properties to individual materials and realize appropriate physical dimensions in order to satisfy increasing demands of multifunctionality for fundamental studies, device designs, and performance optimization. Therefore, these challenges and opportunities can be addressed by designing (optical) electronic and energy devices with unique functionality and versatility through the combined advantages of multidimensional integration or hybridization of inorganic semiconductors, especially inorganic two-dimensional semiconductor materials, with various types of organic materials with potentially novel functions and unique properties. Herein, a comprehensive review of emerging integration or hybridization of inorganic semiconductor materials with organic materials from their individual components, and assembly fabrication to their state-of-the-art electronic, optoelectronic, magnetic, and energy applications is presented. Future opportunities and challenges associated with these organic/inorganic hybrids are highlighted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
Photocatalytic degradation of Toluene by three-dimensional monolithic Titanium Dioxide / Cuprous Oxide foams with Z-schemed Heterojunction Development and characterization of zein/gum Arabic nanocomposites incorporated edible films for improving strawberry preservation Dynamically interactive nanoparticles in three-dimensional microbeads for enhanced sensitivity, stability, and filtration in colorimetric sensing Efficient charge separation in Z-scheme heterojunctions induced by chemical bonding-enhanced internal electric field for promoting photocatalytic conversion of corn stover to C1/C2 gases Multifunctional PVA/PNIPAM conductive hydrogel sensors enabled human-machine interaction intelligent rehabilitation training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1