Saleha Jamal, Mohd Saqib, Wani Suhail Ahmad, Manal Ahmad, Md Ashif Ali, Md Babor Ali
{"title":"通过地表温度分析揭示土地转型的复杂性及其对城市可持续性的影响","authors":"Saleha Jamal, Mohd Saqib, Wani Suhail Ahmad, Manal Ahmad, Md Ashif Ali, Md Babor Ali","doi":"10.1007/s12518-023-00521-y","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the ongoing population increase over the past years, fast and unchecked urbanization has been occurring in the urban centers of developing nations like India. As a result, land transformation is taking place at a fast pace leading to the creation of urban heat island (UHI). Urban heat island (UHI) constitutes a significant human alteration to the Earth system. Hence, this study presents a rigorous and comprehensive analysis of the impact of land use and cover on land surface temperature (LST) in Aligarh City, Uttar Pradesh, India, using multi-dimensional satellite data. The research collected Landsat data for four different phases (1991, 2001, 2011, and 2021) and analyzed it in conjunction with land use and cover (LULC) data to identify trends and variations. The result shows a consistent increase in LST since 1991, with built-up and bare land areas exhibiting the highest temperatures across all phases. Moreover, the study found that impervious land had the most significant effect on LST, followed by water bodies and vegetation cover. The analysis of the proportion of the area with the lowest and highest LST showed interesting trends, with a greater portion of Aligarh City experiencing a temperature range between 15 and 16 °C in 2021 compared to previous years. However, the study also found that 13.55% of the area had a maximum LST of over 17 °C, which is higher than the previous measurement of 9.04%, and has been steadily increasing since 1991. The accuracy of the study was verified by detecting elevated temperatures in non-porous areas and cooler temperatures near green zones and water bodies. This study’s contribution to the research community lies in the data-driven, systematic analysis of the complex relationship between land use and cover and LST in an urban environment. The study’s findings suggest that alterations in land use/cover patterns have a significant impact on LST, which has important implications for urban planning policies. The research provides valuable insights for urban planners, policymakers, and city officials, as it highlights the need for sustainable and efficient urban planning policies to mitigate the effects of urban heat islands and rising temperatures. The study’s results have broader implications beyond Aligarh City and can inform land-use planning and policymaking in other cities facing similar challenges. This research presents a comprehensive analysis that can serve as a framework to inform land-use planning and policymaking, contributing to the development of sustainable and efficient urban environments.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"15 3","pages":"719 - 741"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the complexities of land transformation and its impact on urban sustainability through land surface temperature analysis\",\"authors\":\"Saleha Jamal, Mohd Saqib, Wani Suhail Ahmad, Manal Ahmad, Md Ashif Ali, Md Babor Ali\",\"doi\":\"10.1007/s12518-023-00521-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the ongoing population increase over the past years, fast and unchecked urbanization has been occurring in the urban centers of developing nations like India. As a result, land transformation is taking place at a fast pace leading to the creation of urban heat island (UHI). Urban heat island (UHI) constitutes a significant human alteration to the Earth system. Hence, this study presents a rigorous and comprehensive analysis of the impact of land use and cover on land surface temperature (LST) in Aligarh City, Uttar Pradesh, India, using multi-dimensional satellite data. The research collected Landsat data for four different phases (1991, 2001, 2011, and 2021) and analyzed it in conjunction with land use and cover (LULC) data to identify trends and variations. The result shows a consistent increase in LST since 1991, with built-up and bare land areas exhibiting the highest temperatures across all phases. Moreover, the study found that impervious land had the most significant effect on LST, followed by water bodies and vegetation cover. The analysis of the proportion of the area with the lowest and highest LST showed interesting trends, with a greater portion of Aligarh City experiencing a temperature range between 15 and 16 °C in 2021 compared to previous years. However, the study also found that 13.55% of the area had a maximum LST of over 17 °C, which is higher than the previous measurement of 9.04%, and has been steadily increasing since 1991. The accuracy of the study was verified by detecting elevated temperatures in non-porous areas and cooler temperatures near green zones and water bodies. This study’s contribution to the research community lies in the data-driven, systematic analysis of the complex relationship between land use and cover and LST in an urban environment. The study’s findings suggest that alterations in land use/cover patterns have a significant impact on LST, which has important implications for urban planning policies. The research provides valuable insights for urban planners, policymakers, and city officials, as it highlights the need for sustainable and efficient urban planning policies to mitigate the effects of urban heat islands and rising temperatures. The study’s results have broader implications beyond Aligarh City and can inform land-use planning and policymaking in other cities facing similar challenges. This research presents a comprehensive analysis that can serve as a framework to inform land-use planning and policymaking, contributing to the development of sustainable and efficient urban environments.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"15 3\",\"pages\":\"719 - 741\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-023-00521-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-023-00521-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Unraveling the complexities of land transformation and its impact on urban sustainability through land surface temperature analysis
Due to the ongoing population increase over the past years, fast and unchecked urbanization has been occurring in the urban centers of developing nations like India. As a result, land transformation is taking place at a fast pace leading to the creation of urban heat island (UHI). Urban heat island (UHI) constitutes a significant human alteration to the Earth system. Hence, this study presents a rigorous and comprehensive analysis of the impact of land use and cover on land surface temperature (LST) in Aligarh City, Uttar Pradesh, India, using multi-dimensional satellite data. The research collected Landsat data for four different phases (1991, 2001, 2011, and 2021) and analyzed it in conjunction with land use and cover (LULC) data to identify trends and variations. The result shows a consistent increase in LST since 1991, with built-up and bare land areas exhibiting the highest temperatures across all phases. Moreover, the study found that impervious land had the most significant effect on LST, followed by water bodies and vegetation cover. The analysis of the proportion of the area with the lowest and highest LST showed interesting trends, with a greater portion of Aligarh City experiencing a temperature range between 15 and 16 °C in 2021 compared to previous years. However, the study also found that 13.55% of the area had a maximum LST of over 17 °C, which is higher than the previous measurement of 9.04%, and has been steadily increasing since 1991. The accuracy of the study was verified by detecting elevated temperatures in non-porous areas and cooler temperatures near green zones and water bodies. This study’s contribution to the research community lies in the data-driven, systematic analysis of the complex relationship between land use and cover and LST in an urban environment. The study’s findings suggest that alterations in land use/cover patterns have a significant impact on LST, which has important implications for urban planning policies. The research provides valuable insights for urban planners, policymakers, and city officials, as it highlights the need for sustainable and efficient urban planning policies to mitigate the effects of urban heat islands and rising temperatures. The study’s results have broader implications beyond Aligarh City and can inform land-use planning and policymaking in other cities facing similar challenges. This research presents a comprehensive analysis that can serve as a framework to inform land-use planning and policymaking, contributing to the development of sustainable and efficient urban environments.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements