Francis Duval, Jean-Philippe Boucher, Mathieu Pigeon
{"title":"通过从异常检测衍生的例程和特性剖面中提取特征来增强索赔分类","authors":"Francis Duval, Jean-Philippe Boucher, Mathieu Pigeon","doi":"10.1111/jori.12418","DOIUrl":null,"url":null,"abstract":"<p>Usage-based insurance is becoming the new standard in vehicle insurance; it is therefore relevant to find efficient ways of using insureds' driving data. Applying anomaly detection (AD) to vehicles' trip summaries, we develop a method allowing to derive a “routine” and a “peculiarity” anomaly profile for each vehicle. To this end, AD algorithms are used to compute a routine and a peculiarity anomaly score for each trip a vehicle makes. The former measures the anomaly degree of the trip compared with the other trips made by the concerned vehicle, while the latter measures its anomaly degree compared with trips made by any vehicle. The resulting anomaly scores vectors are used as routine and peculiarity profiles. Features are then extracted from these profiles, for which we investigate the predictive power in the claim classification framework. Using real data, we find that features extracted from the vehicles' peculiarity profile improve the classification.</p>","PeriodicalId":51440,"journal":{"name":"Journal of Risk and Insurance","volume":"90 2","pages":"421-458"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing claim classification with feature extraction from anomaly-detection-derived routine and peculiarity profiles\",\"authors\":\"Francis Duval, Jean-Philippe Boucher, Mathieu Pigeon\",\"doi\":\"10.1111/jori.12418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Usage-based insurance is becoming the new standard in vehicle insurance; it is therefore relevant to find efficient ways of using insureds' driving data. Applying anomaly detection (AD) to vehicles' trip summaries, we develop a method allowing to derive a “routine” and a “peculiarity” anomaly profile for each vehicle. To this end, AD algorithms are used to compute a routine and a peculiarity anomaly score for each trip a vehicle makes. The former measures the anomaly degree of the trip compared with the other trips made by the concerned vehicle, while the latter measures its anomaly degree compared with trips made by any vehicle. The resulting anomaly scores vectors are used as routine and peculiarity profiles. Features are then extracted from these profiles, for which we investigate the predictive power in the claim classification framework. Using real data, we find that features extracted from the vehicles' peculiarity profile improve the classification.</p>\",\"PeriodicalId\":51440,\"journal\":{\"name\":\"Journal of Risk and Insurance\",\"volume\":\"90 2\",\"pages\":\"421-458\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Risk and Insurance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jori.12418\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk and Insurance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jori.12418","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Enhancing claim classification with feature extraction from anomaly-detection-derived routine and peculiarity profiles
Usage-based insurance is becoming the new standard in vehicle insurance; it is therefore relevant to find efficient ways of using insureds' driving data. Applying anomaly detection (AD) to vehicles' trip summaries, we develop a method allowing to derive a “routine” and a “peculiarity” anomaly profile for each vehicle. To this end, AD algorithms are used to compute a routine and a peculiarity anomaly score for each trip a vehicle makes. The former measures the anomaly degree of the trip compared with the other trips made by the concerned vehicle, while the latter measures its anomaly degree compared with trips made by any vehicle. The resulting anomaly scores vectors are used as routine and peculiarity profiles. Features are then extracted from these profiles, for which we investigate the predictive power in the claim classification framework. Using real data, we find that features extracted from the vehicles' peculiarity profile improve the classification.
期刊介绍:
The Journal of Risk and Insurance (JRI) is the premier outlet for theoretical and empirical research on the topics of insurance economics and risk management. Research in the JRI informs practice, policy-making, and regulation in insurance markets as well as corporate and household risk management. JRI is the flagship journal for the American Risk and Insurance Association, and is currently indexed by the American Economic Association’s Economic Literature Index, RePEc, the Social Sciences Citation Index, and others. Issues of the Journal of Risk and Insurance, from volume one to volume 82 (2015), are available online through JSTOR . Recent issues of JRI are available through Wiley Online Library. In addition to the research areas of traditional strength for the JRI, the editorial team highlights below specific areas for special focus in the near term, due to their current relevance for the field.