计算线性时不变系统对周期输入信号的闭合响应的一种新方法

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Circuits Devices & Systems Pub Date : 2023-01-04 DOI:10.1049/cds2.12142
Ahmad Safaai-Jazi
{"title":"计算线性时不变系统对周期输入信号的闭合响应的一种新方法","authors":"Ahmad Safaai-Jazi","doi":"10.1049/cds2.12142","DOIUrl":null,"url":null,"abstract":"<p>A new method for finding closed-form time-domain solutions of linear time-invariant (LTI) systems with arbitrary periodic input signals is presented. These solutions, unlike those obtained based on the conventional Fourier-phasor method, have a finite number of terms in one period. To implement the proposed method, the following steps are carried out: (1) For a given system, represented by a transfer function, an impulse response, a block diagram etc., the governing differential equation relating the output of the system, <math>\n <semantics>\n <mrow>\n <mi>y</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $y(t)$</annotation>\n </semantics></math>, to its input, <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $x(t)$</annotation>\n </semantics></math>, is obtained. (2) An auxiliary differential equation is formed by simply replacing <math>\n <semantics>\n <mrow>\n <mi>y</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $y(t)$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mover>\n <mi>y</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\overline{y}(t)$</annotation>\n </semantics></math> and equating the input side to<math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $x(t)$</annotation>\n </semantics></math> alone. The auxiliary differential equation is solved for each time segment of the input signal in one period, leaving the constant coefficients associated with the homogeneous solutions as unknowns. For an <i>n</i>th-order system with an input signal consisting of <i>q</i> segments in one period, there are <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>×</mo>\n <mi>q</mi>\n </mrow>\n <annotation> $n\\times q$</annotation>\n </semantics></math> such unknown coefficients. (3) Continuity of <math>\n <semantics>\n <mrow>\n <mover>\n <mi>y</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\overline{y}(t)$</annotation>\n </semantics></math> and its derivatives, <math>\n <semantics>\n <mrow>\n <msup>\n <mi>d</mi>\n <mi>k</mi>\n </msup>\n <mover>\n <mi>y</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mi>d</mi>\n <msup>\n <mi>t</mi>\n <mi>k</mi>\n </msup>\n <mo>,</mo>\n </mrow>\n <annotation> ${d}^{k}\\overline{y}(t)/d{t}^{k},$</annotation>\n </semantics></math> <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>⋅</mo>\n <mo>⋅</mo>\n <mo>⋅</mo>\n <mo>,</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n </mrow>\n <annotation> $k=1,\\cdot \\cdot \\cdot ,n-1,$</annotation>\n </semantics></math> at the connection points of successive segments and the periodicity conditions for the beginning and end points of the period are implemented. (4) The outcome of step 3 is a system of <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>×</mo>\n <mi>q</mi>\n </mrow>\n <annotation> $n\\times q$</annotation>\n </semantics></math> equations in terms of <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>×</mo>\n <mi>q</mi>\n </mrow>\n <annotation> $n\\times q$</annotation>\n </semantics></math> unknown coefficients described in step 2. Solving this system of equations, the solution for <math>\n <semantics>\n <mrow>\n <mover>\n <mi>y</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\overline{y}(t)$</annotation>\n </semantics></math> in one period is obtained. (5) Finally, using the linearity and differentiation properties of the system and the coefficients of the input side of the differential equation of the system, the total response, <math>\n <semantics>\n <mrow>\n <mi>y</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $y(t)$</annotation>\n </semantics></math>, in one period is constructed in terms of <math>\n <semantics>\n <mrow>\n <mover>\n <mi>y</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\overline{y}(t)$</annotation>\n </semantics></math> and its derivatives. For stable LTI systems, the proposed method can be used without any limitations.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 2","pages":"88-94"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12142","citationCount":"0","resultStr":"{\"title\":\"A new method for calculation of closed-form response of linear time-invariant systems to periodic input signals\",\"authors\":\"Ahmad Safaai-Jazi\",\"doi\":\"10.1049/cds2.12142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new method for finding closed-form time-domain solutions of linear time-invariant (LTI) systems with arbitrary periodic input signals is presented. These solutions, unlike those obtained based on the conventional Fourier-phasor method, have a finite number of terms in one period. To implement the proposed method, the following steps are carried out: (1) For a given system, represented by a transfer function, an impulse response, a block diagram etc., the governing differential equation relating the output of the system, <math>\\n <semantics>\\n <mrow>\\n <mi>y</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $y(t)$</annotation>\\n </semantics></math>, to its input, <math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $x(t)$</annotation>\\n </semantics></math>, is obtained. (2) An auxiliary differential equation is formed by simply replacing <math>\\n <semantics>\\n <mrow>\\n <mi>y</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $y(t)$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>y</mi>\\n <mo>‾</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\overline{y}(t)$</annotation>\\n </semantics></math> and equating the input side to<math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $x(t)$</annotation>\\n </semantics></math> alone. The auxiliary differential equation is solved for each time segment of the input signal in one period, leaving the constant coefficients associated with the homogeneous solutions as unknowns. For an <i>n</i>th-order system with an input signal consisting of <i>q</i> segments in one period, there are <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>×</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $n\\\\times q$</annotation>\\n </semantics></math> such unknown coefficients. (3) Continuity of <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>y</mi>\\n <mo>‾</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\overline{y}(t)$</annotation>\\n </semantics></math> and its derivatives, <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>d</mi>\\n <mi>k</mi>\\n </msup>\\n <mover>\\n <mi>y</mi>\\n <mo>‾</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <mi>d</mi>\\n <msup>\\n <mi>t</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>,</mo>\\n </mrow>\\n <annotation> ${d}^{k}\\\\overline{y}(t)/d{t}^{k},$</annotation>\\n </semantics></math> <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mo>⋅</mo>\\n <mo>⋅</mo>\\n <mo>⋅</mo>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n </mrow>\\n <annotation> $k=1,\\\\cdot \\\\cdot \\\\cdot ,n-1,$</annotation>\\n </semantics></math> at the connection points of successive segments and the periodicity conditions for the beginning and end points of the period are implemented. (4) The outcome of step 3 is a system of <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>×</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $n\\\\times q$</annotation>\\n </semantics></math> equations in terms of <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>×</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $n\\\\times q$</annotation>\\n </semantics></math> unknown coefficients described in step 2. Solving this system of equations, the solution for <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>y</mi>\\n <mo>‾</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\overline{y}(t)$</annotation>\\n </semantics></math> in one period is obtained. (5) Finally, using the linearity and differentiation properties of the system and the coefficients of the input side of the differential equation of the system, the total response, <math>\\n <semantics>\\n <mrow>\\n <mi>y</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $y(t)$</annotation>\\n </semantics></math>, in one period is constructed in terms of <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>y</mi>\\n <mo>‾</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\overline{y}(t)$</annotation>\\n </semantics></math> and its derivatives. For stable LTI systems, the proposed method can be used without any limitations.</p>\",\"PeriodicalId\":50386,\"journal\":{\"name\":\"Iet Circuits Devices & Systems\",\"volume\":\"17 2\",\"pages\":\"88-94\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Circuits Devices & Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12142\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12142","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种求解具有任意周期输入信号的线性时不变(LTI)系统时域闭合解的新方法。与基于传统傅立叶相量方法获得的解不同,这些解在一个周期内具有有限数量的项。为了实现所提出的方法,执行了以下步骤:(1)对于由传递函数、脉冲响应、框图等表示的给定系统,与系统输出相关的控制微分方程,y(t)$y(t,x(t)$x(t。(2) 一个辅助微分方程是通过简单地用y代替y(t)$y(t)$而形成的‾(t)$\覆盖{y}(t)$并将输入侧等同于x(t)仅$x(t)$。在一个周期内为输入信号的每个时间段求解辅助微分方程,留下与齐次解相关的常数系数作为未知数。对于输入信号在一个周期内由q个分段组成的n阶系统,存在n×q$n×q$这样的未知系数。(3) y‾(t)$\overline{y}(t)$及其导数的连续性,d k y‾(t)/dtk,${d}^{k}\覆盖线{y}(t)/d{t}^{k},$k=1,‧‧‧,n−1,$k=1,\cdot\cdot\cbot,n-1,$在连续段的连接点处,并且实现了周期的起点和终点的周期性条件。(4) 步骤3的结果是根据n×q$n\times q$未知的n×q$n\times q$方程组步骤2中描述的系数。求解该方程组,得到了y‾(t)$\overline{y}(t)$在一个周期内的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new method for calculation of closed-form response of linear time-invariant systems to periodic input signals

A new method for finding closed-form time-domain solutions of linear time-invariant (LTI) systems with arbitrary periodic input signals is presented. These solutions, unlike those obtained based on the conventional Fourier-phasor method, have a finite number of terms in one period. To implement the proposed method, the following steps are carried out: (1) For a given system, represented by a transfer function, an impulse response, a block diagram etc., the governing differential equation relating the output of the system, y ( t ) $y(t)$ , to its input, x ( t ) $x(t)$ , is obtained. (2) An auxiliary differential equation is formed by simply replacing y ( t ) $y(t)$ with y ( t ) $\overline{y}(t)$ and equating the input side to x ( t ) $x(t)$ alone. The auxiliary differential equation is solved for each time segment of the input signal in one period, leaving the constant coefficients associated with the homogeneous solutions as unknowns. For an nth-order system with an input signal consisting of q segments in one period, there are n × q $n\times q$ such unknown coefficients. (3) Continuity of y ( t ) $\overline{y}(t)$ and its derivatives, d k y ( t ) / d t k , ${d}^{k}\overline{y}(t)/d{t}^{k},$ k = 1 , , n 1 , $k=1,\cdot \cdot \cdot ,n-1,$ at the connection points of successive segments and the periodicity conditions for the beginning and end points of the period are implemented. (4) The outcome of step 3 is a system of n × q $n\times q$ equations in terms of n × q $n\times q$ unknown coefficients described in step 2. Solving this system of equations, the solution for y ( t ) $\overline{y}(t)$ in one period is obtained. (5) Finally, using the linearity and differentiation properties of the system and the coefficients of the input side of the differential equation of the system, the total response, y ( t ) $y(t)$ , in one period is constructed in terms of y ( t ) $\overline{y}(t)$ and its derivatives. For stable LTI systems, the proposed method can be used without any limitations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Circuits Devices & Systems
Iet Circuits Devices & Systems 工程技术-工程:电子与电气
CiteScore
3.80
自引率
7.70%
发文量
32
审稿时长
3 months
期刊介绍: IET Circuits, Devices & Systems covers the following topics: Circuit theory and design, circuit analysis and simulation, computer aided design Filters (analogue and switched capacitor) Circuit implementations, cells and architectures for integration including VLSI Testability, fault tolerant design, minimisation of circuits and CAD for VLSI Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs Device and process characterisation, device parameter extraction schemes Mathematics of circuits and systems theory Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers
期刊最新文献
A 2-GHz GaN HEMT Power Amplifier Harmonically Tuned Using a Compact One-Port CRLH Transmission Line An Efficient Approximate Multiplier with Encoded Partial Products and Inexact Counter for Joint Photographic Experts Group Compression Synthetic Aperture Interferometric Passive Radiometer Imaging to Locate Electromagnetic Leakage From Spacecraft Surface Simultaneous Optimal Allocation of EVCSs and RESs Using an Improved Genetic Method Intelligent Control of Surgical Robot for Telesurgery: An Application to Smart Healthcare Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1