Ludwig Kampel, Irene Hiess, Ilias S. Kotsireas, Dimitris E. Simos
{"title":"平衡覆盖阵列:通过精确方法对覆盖阵列和填充阵列进行分类","authors":"Ludwig Kampel, Irene Hiess, Ilias S. Kotsireas, Dimitris E. Simos","doi":"10.1002/jcd.21876","DOIUrl":null,"url":null,"abstract":"<p>In this paper we investigate the intersections of classes of covering arrays (CAs) and packing arrays (PAs). The arrays appearing in these intersections obey to upper and lower bounds regarding the appearance of tuples in sub-matrices—we call these arrays <i>balanced covering arrays</i>. We formulate and formalize first observations for which upper and lower bounds on the appearance of tuples it is of interest to consider these intersections of CAs and PAs. Outside of these bounds the intersections will be either empty, for the case of too restrictive constraints, or equal to the maximum element in the emerging lattices, for the case of too weak constraints. We present a column extension algorithm for classification of nonequivalent balanced CAs that uses a SAT solver or a pseudo-Boolean (PB) solver to compute the columns suitable for array extension together with a lex-leader ordering to identify unique representatives for each equivalence class of balanced CAs. These computations bring to light a dissection of classes of CAs that is partially nested due to the nature of the considered intersections. These dissections can be trivial, containing only a single type of balanced CAs, or can also appear as highly structured containing multiple nested types of balanced CAs. Our results indicate that balanced CAs are an interesting class of designs that is rich of structure.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 4","pages":"205-261"},"PeriodicalIF":0.5000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balanced covering arrays: A classification of covering arrays and packing arrays via exact methods\",\"authors\":\"Ludwig Kampel, Irene Hiess, Ilias S. Kotsireas, Dimitris E. Simos\",\"doi\":\"10.1002/jcd.21876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we investigate the intersections of classes of covering arrays (CAs) and packing arrays (PAs). The arrays appearing in these intersections obey to upper and lower bounds regarding the appearance of tuples in sub-matrices—we call these arrays <i>balanced covering arrays</i>. We formulate and formalize first observations for which upper and lower bounds on the appearance of tuples it is of interest to consider these intersections of CAs and PAs. Outside of these bounds the intersections will be either empty, for the case of too restrictive constraints, or equal to the maximum element in the emerging lattices, for the case of too weak constraints. We present a column extension algorithm for classification of nonequivalent balanced CAs that uses a SAT solver or a pseudo-Boolean (PB) solver to compute the columns suitable for array extension together with a lex-leader ordering to identify unique representatives for each equivalence class of balanced CAs. These computations bring to light a dissection of classes of CAs that is partially nested due to the nature of the considered intersections. These dissections can be trivial, containing only a single type of balanced CAs, or can also appear as highly structured containing multiple nested types of balanced CAs. Our results indicate that balanced CAs are an interesting class of designs that is rich of structure.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 4\",\"pages\":\"205-261\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21876\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21876","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Balanced covering arrays: A classification of covering arrays and packing arrays via exact methods
In this paper we investigate the intersections of classes of covering arrays (CAs) and packing arrays (PAs). The arrays appearing in these intersections obey to upper and lower bounds regarding the appearance of tuples in sub-matrices—we call these arrays balanced covering arrays. We formulate and formalize first observations for which upper and lower bounds on the appearance of tuples it is of interest to consider these intersections of CAs and PAs. Outside of these bounds the intersections will be either empty, for the case of too restrictive constraints, or equal to the maximum element in the emerging lattices, for the case of too weak constraints. We present a column extension algorithm for classification of nonequivalent balanced CAs that uses a SAT solver or a pseudo-Boolean (PB) solver to compute the columns suitable for array extension together with a lex-leader ordering to identify unique representatives for each equivalence class of balanced CAs. These computations bring to light a dissection of classes of CAs that is partially nested due to the nature of the considered intersections. These dissections can be trivial, containing only a single type of balanced CAs, or can also appear as highly structured containing multiple nested types of balanced CAs. Our results indicate that balanced CAs are an interesting class of designs that is rich of structure.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.