在地理分析工作流程中插入视觉支持推理的框架:在道路安全研究中的应用

IF 3.3 3区 地球科学 Q1 GEOGRAPHY Geographical Analysis Pub Date : 2022-07-06 DOI:10.1111/gean.12338
Roger Beecham, Robin Lovelace
{"title":"在地理分析工作流程中插入视觉支持推理的框架:在道路安全研究中的应用","authors":"Roger Beecham,&nbsp;Robin Lovelace","doi":"10.1111/gean.12338","DOIUrl":null,"url":null,"abstract":"<p>Road safety research is a data-rich field with large social impacts. Like in medical research, the ambition is to build knowledge around risk factors that can save lives. Unlike medical research, road safety research generates empirical findings from messy observational datasets. Records of road crashes contain numerous intersecting categorical variables, dominating patterns that are complicated by confounding and, when conditioning on data to make inferences net of this, observed effects that are subject to uncertainty due to diminishing sample sizes. We demonstrate how visual data analysis approaches can inject rigor into exploratory analysis of such datasets. A framework is presented whereby graphics are used to expose, model and evaluate spatial patterns in observational data, as well as protect against false discovery. Evidence for the framework is presented through an applied data analysis of national crash patterns recorded in STATS19, the main source of road crash information in Great Britain. Our framework moves beyond typical depictions of exploratory data analysis and transfers to complex data analysis decision spaces characteristic of modern geographical analysis.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"55 3","pages":"345-366"},"PeriodicalIF":3.3000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12338","citationCount":"0","resultStr":"{\"title\":\"A Framework for Inserting Visually Supported Inferences into Geographical Analysis Workflow: Application to Road Safety Research\",\"authors\":\"Roger Beecham,&nbsp;Robin Lovelace\",\"doi\":\"10.1111/gean.12338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Road safety research is a data-rich field with large social impacts. Like in medical research, the ambition is to build knowledge around risk factors that can save lives. Unlike medical research, road safety research generates empirical findings from messy observational datasets. Records of road crashes contain numerous intersecting categorical variables, dominating patterns that are complicated by confounding and, when conditioning on data to make inferences net of this, observed effects that are subject to uncertainty due to diminishing sample sizes. We demonstrate how visual data analysis approaches can inject rigor into exploratory analysis of such datasets. A framework is presented whereby graphics are used to expose, model and evaluate spatial patterns in observational data, as well as protect against false discovery. Evidence for the framework is presented through an applied data analysis of national crash patterns recorded in STATS19, the main source of road crash information in Great Britain. Our framework moves beyond typical depictions of exploratory data analysis and transfers to complex data analysis decision spaces characteristic of modern geographical analysis.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"55 3\",\"pages\":\"345-366\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12338\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.12338\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12338","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

道路安全研究是一个数据丰富、社会影响大的领域。与医学研究一样,其目标是围绕可以挽救生命的风险因素建立知识。与医学研究不同,道路安全研究从混乱的观测数据集中得出经验结果。道路交通事故的记录包含许多交叉的分类变量,这些变量的主导模式因混淆而变得复杂,当以数据为条件进行推断时,由于样本量的减少,观察到的影响会受到不确定性的影响。我们展示了可视化数据分析方法如何为此类数据集的探索性分析注入严谨性。提出了一个框架,使用图形来暴露、建模和评估观测数据中的空间模式,并防止错误发现。通过对STATS19中记录的国家车祸模式的应用数据分析,为该框架提供了证据,STATS19是英国道路车祸信息的主要来源。我们的框架超越了探索性数据分析的典型描述,并转移到现代地理分析特有的复杂数据分析决策空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for Inserting Visually Supported Inferences into Geographical Analysis Workflow: Application to Road Safety Research

Road safety research is a data-rich field with large social impacts. Like in medical research, the ambition is to build knowledge around risk factors that can save lives. Unlike medical research, road safety research generates empirical findings from messy observational datasets. Records of road crashes contain numerous intersecting categorical variables, dominating patterns that are complicated by confounding and, when conditioning on data to make inferences net of this, observed effects that are subject to uncertainty due to diminishing sample sizes. We demonstrate how visual data analysis approaches can inject rigor into exploratory analysis of such datasets. A framework is presented whereby graphics are used to expose, model and evaluate spatial patterns in observational data, as well as protect against false discovery. Evidence for the framework is presented through an applied data analysis of national crash patterns recorded in STATS19, the main source of road crash information in Great Britain. Our framework moves beyond typical depictions of exploratory data analysis and transfers to complex data analysis decision spaces characteristic of modern geographical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
5.60%
发文量
40
期刊介绍: First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.
期刊最新文献
Issue Information Impacts of improved transport on regional market access Testing Hypotheses When You Have More Than a Few* Beyond Auto‐Models: Self‐Correlated Sui‐Model Respecifications Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1