合成孔径雷达幅度和强度数据的广义伽玛ARMA处理

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2023-06-10 DOI:10.1002/env.2816
Willams B. F. da Silva, Pedro M. Almeida-Junior, Abraão D. C. Nascimento
{"title":"合成孔径雷达幅度和强度数据的广义伽玛ARMA处理","authors":"Willams B. F. da Silva,&nbsp;Pedro M. Almeida-Junior,&nbsp;Abraão D. C. Nascimento","doi":"10.1002/env.2816","DOIUrl":null,"url":null,"abstract":"<p>We propose a new autoregressive moving average (ARMA) process with generalized gamma (G<math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\Gamma $$</annotation>\n </semantics></math>) marginal law, called G<math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\Gamma $$</annotation>\n </semantics></math>-ARMA. We derive some of its mathematical properties: moment-based closed-form expressions, score function, and Fisher information matrix. We provide a procedure for obtaining maximum likelihood estimates for the G<math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\Gamma $$</annotation>\n </semantics></math>-ARMA parameters. Its performance is quantified and discussed using Monte Carlo experiments, considering (among others) various link functions. Finally, our proposal is applied to solve remote sensing problems using synthetic aperture radar (SAR) imagery. In particular, the G<math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\Gamma $$</annotation>\n </semantics></math>-ARMA process is applied to real data from images taken in the Munich and San Francisco regions. The results show that G<math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\Gamma $$</annotation>\n </semantics></math>-ARMA describes the neighborhoods of SAR features better than the gamma-ARMA process (a reference for asymmetric positive data). For pixel ray modeling, our proposal outperforms <math>\n <mrow>\n <msubsup>\n <mrow>\n <mi>𝒢</mi>\n </mrow>\n <mrow>\n <mi>I</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msubsup>\n </mrow></math> and gamma-ARMA.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data\",\"authors\":\"Willams B. F. da Silva,&nbsp;Pedro M. Almeida-Junior,&nbsp;Abraão D. C. Nascimento\",\"doi\":\"10.1002/env.2816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a new autoregressive moving average (ARMA) process with generalized gamma (G<math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\Gamma $$</annotation>\\n </semantics></math>) marginal law, called G<math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\Gamma $$</annotation>\\n </semantics></math>-ARMA. We derive some of its mathematical properties: moment-based closed-form expressions, score function, and Fisher information matrix. We provide a procedure for obtaining maximum likelihood estimates for the G<math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\Gamma $$</annotation>\\n </semantics></math>-ARMA parameters. Its performance is quantified and discussed using Monte Carlo experiments, considering (among others) various link functions. Finally, our proposal is applied to solve remote sensing problems using synthetic aperture radar (SAR) imagery. In particular, the G<math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\Gamma $$</annotation>\\n </semantics></math>-ARMA process is applied to real data from images taken in the Munich and San Francisco regions. The results show that G<math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\Gamma $$</annotation>\\n </semantics></math>-ARMA describes the neighborhoods of SAR features better than the gamma-ARMA process (a reference for asymmetric positive data). For pixel ray modeling, our proposal outperforms <math>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mi>𝒢</mi>\\n </mrow>\\n <mrow>\\n <mi>I</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msubsup>\\n </mrow></math> and gamma-ARMA.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"34 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2816\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2816","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的具有广义伽马(G Γ $$ \Gamma $$)边际律的自回归移动平均(ARMA)过程,称为G Γ $$ \Gamma $$ -ARMA。我们推导了它的一些数学性质:基于矩的封闭表达式、分数函数和Fisher信息矩阵。我们提供了一个程序来获得G Γ $$ \Gamma $$ -ARMA参数的最大似然估计。它的性能是量化和讨论使用蒙特卡罗实验,考虑(除其他外)各种链接函数。最后,将该方法应用于合成孔径雷达(SAR)图像遥感问题的解决。特别是,G Γ $$ \Gamma $$ -ARMA过程应用于慕尼黑和旧金山地区拍摄的图像的真实数据。结果表明,G Γ $$ \Gamma $$ -ARMA过程比gamma-ARMA过程(非对称正数据的参考)更能描述SAR特征的邻域。对于像素射线建模,我们的建议优于𝒢I 0和gamma-ARMA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data

We propose a new autoregressive moving average (ARMA) process with generalized gamma (G Γ $$ \Gamma $$ ) marginal law, called G Γ $$ \Gamma $$ -ARMA. We derive some of its mathematical properties: moment-based closed-form expressions, score function, and Fisher information matrix. We provide a procedure for obtaining maximum likelihood estimates for the G Γ $$ \Gamma $$ -ARMA parameters. Its performance is quantified and discussed using Monte Carlo experiments, considering (among others) various link functions. Finally, our proposal is applied to solve remote sensing problems using synthetic aperture radar (SAR) imagery. In particular, the G Γ $$ \Gamma $$ -ARMA process is applied to real data from images taken in the Munich and San Francisco regions. The results show that G Γ $$ \Gamma $$ -ARMA describes the neighborhoods of SAR features better than the gamma-ARMA process (a reference for asymmetric positive data). For pixel ray modeling, our proposal outperforms 𝒢 I 0 and gamma-ARMA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1