Alexander Boldt, Jan Walter, Fabian Hofbauer, Karen Stetter, Ines Aubel, Martin Bertau, Christof M. Jäger, Thomas Walther
{"title":"在不同曲霉属菌种的废培养基中无细胞合成银纳米粒子","authors":"Alexander Boldt, Jan Walter, Fabian Hofbauer, Karen Stetter, Ines Aubel, Martin Bertau, Christof M. Jäger, Thomas Walther","doi":"10.1002/elsc.202200052","DOIUrl":null,"url":null,"abstract":"<p>The recovery and valorization of metals and rare earth metals from wastewater are of great importance to prevent environmental pollution and recover valuable resources. Certain bacterial and fungal species are capable of removing metal ions from the environment by facilitating their reduction and precipitation. Even though the phenomenon is well documented, little is known about the mechanism. Therefore, we systematically investigated the influence of nitrogen sources, cultivation time, biomass, and protein concentration on silver reduction capacities of cell-free cultivation media (spent media) of <i>Aspergillus niger</i>, <i>A. terreus</i>, and <i>A. oryzae</i>. The spent medium of <i>A. niger</i> showed the highest silver reduction capacities with up to 15 μmol per milliliter spent medium when ammonium was used as the sole N-source. Silver ion reduction in the spent medium was not driven by enzymes and did not correlate with biomass concentration. Nearly full reduction capacity was reached after 2 days of incubation, long before the cessation of growth and onset of the stationary phase. The size of silver nanoparticles formed in the spent medium of <i>A. niger</i> was influenced by the nitrogen source, with silver nanoparticles formed in nitrate or ammonium-containing medium having an average diameter of 32 and 6 nm, respectively.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200052","citationCount":"1","resultStr":"{\"title\":\"Cell-free synthesis of silver nanoparticles in spent media of different Aspergillus species\",\"authors\":\"Alexander Boldt, Jan Walter, Fabian Hofbauer, Karen Stetter, Ines Aubel, Martin Bertau, Christof M. Jäger, Thomas Walther\",\"doi\":\"10.1002/elsc.202200052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The recovery and valorization of metals and rare earth metals from wastewater are of great importance to prevent environmental pollution and recover valuable resources. Certain bacterial and fungal species are capable of removing metal ions from the environment by facilitating their reduction and precipitation. Even though the phenomenon is well documented, little is known about the mechanism. Therefore, we systematically investigated the influence of nitrogen sources, cultivation time, biomass, and protein concentration on silver reduction capacities of cell-free cultivation media (spent media) of <i>Aspergillus niger</i>, <i>A. terreus</i>, and <i>A. oryzae</i>. The spent medium of <i>A. niger</i> showed the highest silver reduction capacities with up to 15 μmol per milliliter spent medium when ammonium was used as the sole N-source. Silver ion reduction in the spent medium was not driven by enzymes and did not correlate with biomass concentration. Nearly full reduction capacity was reached after 2 days of incubation, long before the cessation of growth and onset of the stationary phase. The size of silver nanoparticles formed in the spent medium of <i>A. niger</i> was influenced by the nitrogen source, with silver nanoparticles formed in nitrate or ammonium-containing medium having an average diameter of 32 and 6 nm, respectively.</p>\",\"PeriodicalId\":11678,\"journal\":{\"name\":\"Engineering in Life Sciences\",\"volume\":\"23 3\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200052\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Life Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202200052\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202200052","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cell-free synthesis of silver nanoparticles in spent media of different Aspergillus species
The recovery and valorization of metals and rare earth metals from wastewater are of great importance to prevent environmental pollution and recover valuable resources. Certain bacterial and fungal species are capable of removing metal ions from the environment by facilitating their reduction and precipitation. Even though the phenomenon is well documented, little is known about the mechanism. Therefore, we systematically investigated the influence of nitrogen sources, cultivation time, biomass, and protein concentration on silver reduction capacities of cell-free cultivation media (spent media) of Aspergillus niger, A. terreus, and A. oryzae. The spent medium of A. niger showed the highest silver reduction capacities with up to 15 μmol per milliliter spent medium when ammonium was used as the sole N-source. Silver ion reduction in the spent medium was not driven by enzymes and did not correlate with biomass concentration. Nearly full reduction capacity was reached after 2 days of incubation, long before the cessation of growth and onset of the stationary phase. The size of silver nanoparticles formed in the spent medium of A. niger was influenced by the nitrogen source, with silver nanoparticles formed in nitrate or ammonium-containing medium having an average diameter of 32 and 6 nm, respectively.
期刊介绍:
Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.