基于室内活动时空特征的非自杀性自伤检测

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Biometrics Pub Date : 2023-04-13 DOI:10.1049/bme2.12110
Guanci Yang, Siyuan Yang, Kexin Luo, Shangen Lan, Ling He, Yang Li
{"title":"基于室内活动时空特征的非自杀性自伤检测","authors":"Guanci Yang,&nbsp;Siyuan Yang,&nbsp;Kexin Luo,&nbsp;Shangen Lan,&nbsp;Ling He,&nbsp;Yang Li","doi":"10.1049/bme2.12110","DOIUrl":null,"url":null,"abstract":"<p>Non-suicide self-injury (NSSI) can be dangerous and difficult for guardians or caregivers to detect in time. NSSI refers to when people hurt themselves even though they have no wish to cause critical or long-lasting hurt. To timely identify and effectively prevent NSSI in order to reduce the suicide rates of patients with a potential suicide risk, the detection of NSSI based on the spatiotemporal features of indoor activities is proposed. Firstly, an NSSI behaviour dataset is provided, and it includes four categories that can be used for scientific research on NSSI evaluation. Secondly, an NSSI detection algorithm based on the spatiotemporal features of indoor activities (NssiDetection) is proposed. NssiDetection calculates the human bounding box by using an object detection model and employs a behaviour detection model to extract the temporal and spatial features of NSSI behaviour. Thirdly, the optimal combination schemes of NssiDetection is investigated by checking its performance with different behaviour detection methods and training strategies. Lastly, a case study is performed by implementing an NSSI behaviour detection prototype system. The prototype system has a recognition accuracy of 84.18% for NSSI actions with new backgrounds, persons, or camera angles.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 2","pages":"91-101"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12110","citationCount":"12","resultStr":"{\"title\":\"Detection of non-suicidal self-injury based on spatiotemporal features of indoor activities\",\"authors\":\"Guanci Yang,&nbsp;Siyuan Yang,&nbsp;Kexin Luo,&nbsp;Shangen Lan,&nbsp;Ling He,&nbsp;Yang Li\",\"doi\":\"10.1049/bme2.12110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-suicide self-injury (NSSI) can be dangerous and difficult for guardians or caregivers to detect in time. NSSI refers to when people hurt themselves even though they have no wish to cause critical or long-lasting hurt. To timely identify and effectively prevent NSSI in order to reduce the suicide rates of patients with a potential suicide risk, the detection of NSSI based on the spatiotemporal features of indoor activities is proposed. Firstly, an NSSI behaviour dataset is provided, and it includes four categories that can be used for scientific research on NSSI evaluation. Secondly, an NSSI detection algorithm based on the spatiotemporal features of indoor activities (NssiDetection) is proposed. NssiDetection calculates the human bounding box by using an object detection model and employs a behaviour detection model to extract the temporal and spatial features of NSSI behaviour. Thirdly, the optimal combination schemes of NssiDetection is investigated by checking its performance with different behaviour detection methods and training strategies. Lastly, a case study is performed by implementing an NSSI behaviour detection prototype system. The prototype system has a recognition accuracy of 84.18% for NSSI actions with new backgrounds, persons, or camera angles.</p>\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"12 2\",\"pages\":\"91-101\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12110\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12110\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12110","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 12

摘要

非自杀性自伤(NSSI)可能很危险,监护人或看护人很难及时发现。NSSI指的是人们伤害自己,尽管他们不想造成严重或长期的伤害。为了及时识别并有效预防NSSI,以降低有潜在自杀风险的患者的自杀率,提出了基于室内活动时空特征的NSSI检测方法。首先,提供了一个NSSI行为数据集,它包括四个类别,可用于NSSI评估的科学研究。其次,提出了一种基于室内活动时空特征的NSSI检测算法(NsiDetection)。NssiDetection通过使用对象检测模型来计算人体边界框,并使用行为检测模型来提取NSSI行为的时间和空间特征。第三,通过使用不同的行为检测方法和训练策略检查NsiDetection的性能,研究了NsiDetect的最优组合方案。最后,通过实现NSSI行为检测原型系统进行了案例研究。原型系统对具有新背景、人物或相机角度的NSSI动作的识别准确率为84.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of non-suicidal self-injury based on spatiotemporal features of indoor activities

Non-suicide self-injury (NSSI) can be dangerous and difficult for guardians or caregivers to detect in time. NSSI refers to when people hurt themselves even though they have no wish to cause critical or long-lasting hurt. To timely identify and effectively prevent NSSI in order to reduce the suicide rates of patients with a potential suicide risk, the detection of NSSI based on the spatiotemporal features of indoor activities is proposed. Firstly, an NSSI behaviour dataset is provided, and it includes four categories that can be used for scientific research on NSSI evaluation. Secondly, an NSSI detection algorithm based on the spatiotemporal features of indoor activities (NssiDetection) is proposed. NssiDetection calculates the human bounding box by using an object detection model and employs a behaviour detection model to extract the temporal and spatial features of NSSI behaviour. Thirdly, the optimal combination schemes of NssiDetection is investigated by checking its performance with different behaviour detection methods and training strategies. Lastly, a case study is performed by implementing an NSSI behaviour detection prototype system. The prototype system has a recognition accuracy of 84.18% for NSSI actions with new backgrounds, persons, or camera angles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
期刊最新文献
Facial and Neck Region Analysis for Deepfake Detection Using Remote Photoplethysmography Signal Similarity A Multimodal Biometric Recognition Method Based on Federated Learning Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition Research on TCN Model Based on SSARF Feature Selection in the Field of Human Behavior Recognition A Finger Vein Recognition Algorithm Based on the Histogram of Variable Curvature Directional Binary Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1