{"title":"经济合成O-(2-[18F]氟乙基)-L-酪氨酸(18FFET)方法的研究","authors":"Aishwarya Kumar, Raman Kumar Joshi, Riptee Thakur, Dinesh Kumar, Chandana Nagaraj, Pardeep Kumar","doi":"10.1002/jlcr.4052","DOIUrl":null,"url":null,"abstract":"<p>Positron emission tomography (PET) using O-(2-[<sup>18</sup>F]fluoroethyl)-L-tyrosine ([<sup>18</sup>F]FET) has shown great success in differentiating tumor recurrence from necrosis. In this study, we are reporting the experience of synthesis [<sup>18</sup>F]FET by varying the concentration of TET precursor in different chemistry modules. TET precursor (2–10 mg) was used for the synthesis of [<sup>18</sup>F]FET in an automated (MX Tracerlab) module (<i>n</i> = 6) and semiautomated (FX2N Tracerlab) module (<i>n</i> = 19). The quality control was performed for all the preparations. For human imaging, 220 ± 50 MBq of [<sup>18</sup>F]FET was briefly injected into the patient to acquire PET-MR images. The radiochemical purity was greater than 95% for the final product in both modules. The decay corrected average yield was 10.7 ± 4.7% (10 mg, <i>n</i> = 3) and 8.2 ± 2.6% (2 mg, <i>n</i> = 3) with automated chemistry module and 36.7 ± 7.3% (8–10 mg, <i>n</i> = 12), 26.4 ± 3.1% (5–7 mg, <i>n</i> = 4), and 35.1 ± 3.8% (2–4 mg, <i>n</i> = 3) with semiautomated chemistry modules. The PET imaging showed uptake at the lesion site (SUV<sub>max</sub> = 7.5 ± 2.6) and concordance with the MR image. The [<sup>18</sup>F]FET was produced with a higher radiochemical yield with 2.0 mg of the precursor with substantial yield and is suitable for brain tumor imaging.</p>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":"66 11","pages":"345-352"},"PeriodicalIF":0.9000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an economical method to synthesize O-(2-[18F]fluoroethyl)-L-tyrosine (18FFET)\",\"authors\":\"Aishwarya Kumar, Raman Kumar Joshi, Riptee Thakur, Dinesh Kumar, Chandana Nagaraj, Pardeep Kumar\",\"doi\":\"10.1002/jlcr.4052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Positron emission tomography (PET) using O-(2-[<sup>18</sup>F]fluoroethyl)-L-tyrosine ([<sup>18</sup>F]FET) has shown great success in differentiating tumor recurrence from necrosis. In this study, we are reporting the experience of synthesis [<sup>18</sup>F]FET by varying the concentration of TET precursor in different chemistry modules. TET precursor (2–10 mg) was used for the synthesis of [<sup>18</sup>F]FET in an automated (MX Tracerlab) module (<i>n</i> = 6) and semiautomated (FX2N Tracerlab) module (<i>n</i> = 19). The quality control was performed for all the preparations. For human imaging, 220 ± 50 MBq of [<sup>18</sup>F]FET was briefly injected into the patient to acquire PET-MR images. The radiochemical purity was greater than 95% for the final product in both modules. The decay corrected average yield was 10.7 ± 4.7% (10 mg, <i>n</i> = 3) and 8.2 ± 2.6% (2 mg, <i>n</i> = 3) with automated chemistry module and 36.7 ± 7.3% (8–10 mg, <i>n</i> = 12), 26.4 ± 3.1% (5–7 mg, <i>n</i> = 4), and 35.1 ± 3.8% (2–4 mg, <i>n</i> = 3) with semiautomated chemistry modules. The PET imaging showed uptake at the lesion site (SUV<sub>max</sub> = 7.5 ± 2.6) and concordance with the MR image. The [<sup>18</sup>F]FET was produced with a higher radiochemical yield with 2.0 mg of the precursor with substantial yield and is suitable for brain tumor imaging.</p>\",\"PeriodicalId\":16288,\"journal\":{\"name\":\"Journal of labelled compounds & radiopharmaceuticals\",\"volume\":\"66 11\",\"pages\":\"345-352\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of labelled compounds & radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4052\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Development of an economical method to synthesize O-(2-[18F]fluoroethyl)-L-tyrosine (18FFET)
Positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) has shown great success in differentiating tumor recurrence from necrosis. In this study, we are reporting the experience of synthesis [18F]FET by varying the concentration of TET precursor in different chemistry modules. TET precursor (2–10 mg) was used for the synthesis of [18F]FET in an automated (MX Tracerlab) module (n = 6) and semiautomated (FX2N Tracerlab) module (n = 19). The quality control was performed for all the preparations. For human imaging, 220 ± 50 MBq of [18F]FET was briefly injected into the patient to acquire PET-MR images. The radiochemical purity was greater than 95% for the final product in both modules. The decay corrected average yield was 10.7 ± 4.7% (10 mg, n = 3) and 8.2 ± 2.6% (2 mg, n = 3) with automated chemistry module and 36.7 ± 7.3% (8–10 mg, n = 12), 26.4 ± 3.1% (5–7 mg, n = 4), and 35.1 ± 3.8% (2–4 mg, n = 3) with semiautomated chemistry modules. The PET imaging showed uptake at the lesion site (SUVmax = 7.5 ± 2.6) and concordance with the MR image. The [18F]FET was produced with a higher radiochemical yield with 2.0 mg of the precursor with substantial yield and is suitable for brain tumor imaging.
期刊介绍:
The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo.
The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.