Niamh Cahill, Jacky Croke, Micheline Campbell, Kate Hughes, John Vitkovsky, Jack Eaton Kilgallen, Andrew Parnell
{"title":"从多个代理重建水文气候的贝叶斯时间序列模型","authors":"Niamh Cahill, Jacky Croke, Micheline Campbell, Kate Hughes, John Vitkovsky, Jack Eaton Kilgallen, Andrew Parnell","doi":"10.1002/env.2786","DOIUrl":null,"url":null,"abstract":"<p>We propose a Bayesian model which produces probabilistic reconstructions of hydroclimatic variability in Queensland Australia. The model provides a standardized approach to hydroclimate reconstruction using multiple palaeoclimate proxy records derived from natural archives such as speleothems, ice cores and tree rings. The method combines time-series modeling with inverse prediction to quantify the relationships between a given hydroclimate index and relevant proxies over an instrumental period and subsequently reconstruct the hydroclimate back through time. We present case studies for Brisbane and Fitzroy catchments focusing on two hydroclimate indices, the Rainfall Index (RFI) and the Standardized Precipitation-Evapotranspiration Index (SPEI). The probabilistic nature of the reconstructions allows us to estimate the probability that a hydroclimate index in any reconstruction year was lower (higher) than the minimum (maximum) value observed over the instrumental period. In Brisbane, the RFI is unlikely (probabilities < 5%) to have exhibited extremes beyond the minimum/maximum values observed between 1889 and 2019. However, in Fitzroy there are several years during the reconstruction period where the RFI is likely (>50% probability) to have exhibited behavior beyond the minimum/maximum of what has been observed, during the instrumental period. For SPEI, the probability of observing such extremes prior to the beginning of the instrumental period in 1889 doesn't exceed 30% in any reconstruction year in Brisbane, but exceeds 50% in multiple years in Fitzroy.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2786","citationCount":"0","resultStr":"{\"title\":\"A Bayesian time series model for reconstructing hydroclimate from multiple\\n proxies\",\"authors\":\"Niamh Cahill, Jacky Croke, Micheline Campbell, Kate Hughes, John Vitkovsky, Jack Eaton Kilgallen, Andrew Parnell\",\"doi\":\"10.1002/env.2786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a Bayesian model which produces probabilistic reconstructions of hydroclimatic variability in Queensland Australia. The model provides a standardized approach to hydroclimate reconstruction using multiple palaeoclimate proxy records derived from natural archives such as speleothems, ice cores and tree rings. The method combines time-series modeling with inverse prediction to quantify the relationships between a given hydroclimate index and relevant proxies over an instrumental period and subsequently reconstruct the hydroclimate back through time. We present case studies for Brisbane and Fitzroy catchments focusing on two hydroclimate indices, the Rainfall Index (RFI) and the Standardized Precipitation-Evapotranspiration Index (SPEI). The probabilistic nature of the reconstructions allows us to estimate the probability that a hydroclimate index in any reconstruction year was lower (higher) than the minimum (maximum) value observed over the instrumental period. In Brisbane, the RFI is unlikely (probabilities < 5%) to have exhibited extremes beyond the minimum/maximum values observed between 1889 and 2019. However, in Fitzroy there are several years during the reconstruction period where the RFI is likely (>50% probability) to have exhibited behavior beyond the minimum/maximum of what has been observed, during the instrumental period. For SPEI, the probability of observing such extremes prior to the beginning of the instrumental period in 1889 doesn't exceed 30% in any reconstruction year in Brisbane, but exceeds 50% in multiple years in Fitzroy.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2786\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2786\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2786","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Bayesian time series model for reconstructing hydroclimate from multiple
proxies
We propose a Bayesian model which produces probabilistic reconstructions of hydroclimatic variability in Queensland Australia. The model provides a standardized approach to hydroclimate reconstruction using multiple palaeoclimate proxy records derived from natural archives such as speleothems, ice cores and tree rings. The method combines time-series modeling with inverse prediction to quantify the relationships between a given hydroclimate index and relevant proxies over an instrumental period and subsequently reconstruct the hydroclimate back through time. We present case studies for Brisbane and Fitzroy catchments focusing on two hydroclimate indices, the Rainfall Index (RFI) and the Standardized Precipitation-Evapotranspiration Index (SPEI). The probabilistic nature of the reconstructions allows us to estimate the probability that a hydroclimate index in any reconstruction year was lower (higher) than the minimum (maximum) value observed over the instrumental period. In Brisbane, the RFI is unlikely (probabilities < 5%) to have exhibited extremes beyond the minimum/maximum values observed between 1889 and 2019. However, in Fitzroy there are several years during the reconstruction period where the RFI is likely (>50% probability) to have exhibited behavior beyond the minimum/maximum of what has been observed, during the instrumental period. For SPEI, the probability of observing such extremes prior to the beginning of the instrumental period in 1889 doesn't exceed 30% in any reconstruction year in Brisbane, but exceeds 50% in multiple years in Fitzroy.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.