Masoud Johar, Alireza Salehiyan, Mohammad Javad Emadi, S. Alireza Nezamalhosseini
{"title":"基于HCM的室内光无线通信:定时和数据恢复","authors":"Masoud Johar, Alireza Salehiyan, Mohammad Javad Emadi, S. Alireza Nezamalhosseini","doi":"10.1049/ote2.12105","DOIUrl":null,"url":null,"abstract":"<p>Light-fidelity (Li-Fi) is a promising solution to provide high-rate, secure, and green communications to be used in the next generation of wireless networks. Since visible or infrared (IR) light-emitting diodes (LEDs) are used as the optical source and have a non-linear transfer function, the transmitted modulated signal can be distorted if the signal has a high peak-to-average power ratio (PAPR). Recently, a new modulation scheme called Hadamard-coded modulation (HCM) is proposed which has no PAPR concern since it produces symbols with discrete levels. In the HCM technique, the symbol levels can be created using multiple LEDs. Therefore, each LED operates in its linear region and just switches on or off. A low-complexity transceiver architecture for the HCM-based communication links is proposed and a complete synchronisation procedure based on the spread-spectrum techniques is presented. Finally, the bit error rate of the system is evaluated by Monte Carlo simulations, and effects of system parameters such as preamble length, fall and rise time of optical devices, and timing jitter on the bit error rate of the link are discussed.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"17 5","pages":"237-248"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12105","citationCount":"0","resultStr":"{\"title\":\"HCM-based indoor optical wireless communications: Timing and data recovery\",\"authors\":\"Masoud Johar, Alireza Salehiyan, Mohammad Javad Emadi, S. Alireza Nezamalhosseini\",\"doi\":\"10.1049/ote2.12105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Light-fidelity (Li-Fi) is a promising solution to provide high-rate, secure, and green communications to be used in the next generation of wireless networks. Since visible or infrared (IR) light-emitting diodes (LEDs) are used as the optical source and have a non-linear transfer function, the transmitted modulated signal can be distorted if the signal has a high peak-to-average power ratio (PAPR). Recently, a new modulation scheme called Hadamard-coded modulation (HCM) is proposed which has no PAPR concern since it produces symbols with discrete levels. In the HCM technique, the symbol levels can be created using multiple LEDs. Therefore, each LED operates in its linear region and just switches on or off. A low-complexity transceiver architecture for the HCM-based communication links is proposed and a complete synchronisation procedure based on the spread-spectrum techniques is presented. Finally, the bit error rate of the system is evaluated by Monte Carlo simulations, and effects of system parameters such as preamble length, fall and rise time of optical devices, and timing jitter on the bit error rate of the link are discussed.</p>\",\"PeriodicalId\":13408,\"journal\":{\"name\":\"Iet Optoelectronics\",\"volume\":\"17 5\",\"pages\":\"237-248\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12105\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Optoelectronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12105\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12105","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
HCM-based indoor optical wireless communications: Timing and data recovery
Light-fidelity (Li-Fi) is a promising solution to provide high-rate, secure, and green communications to be used in the next generation of wireless networks. Since visible or infrared (IR) light-emitting diodes (LEDs) are used as the optical source and have a non-linear transfer function, the transmitted modulated signal can be distorted if the signal has a high peak-to-average power ratio (PAPR). Recently, a new modulation scheme called Hadamard-coded modulation (HCM) is proposed which has no PAPR concern since it produces symbols with discrete levels. In the HCM technique, the symbol levels can be created using multiple LEDs. Therefore, each LED operates in its linear region and just switches on or off. A low-complexity transceiver architecture for the HCM-based communication links is proposed and a complete synchronisation procedure based on the spread-spectrum techniques is presented. Finally, the bit error rate of the system is evaluated by Monte Carlo simulations, and effects of system parameters such as preamble length, fall and rise time of optical devices, and timing jitter on the bit error rate of the link are discussed.
期刊介绍:
IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays.
Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues.
IET Optoelectronics covers but is not limited to the following topics:
Optical and optoelectronic materials
Light sources, including LEDs, lasers and devices for lighting
Optical modulation and multiplexing
Optical fibres, cables and connectors
Optical amplifiers
Photodetectors and optical receivers
Photonic integrated circuits
Nanophotonics and photonic crystals
Optical signal processing
Holography
Displays