当生物多样性保护与生物技术相遇:开发合成微生物群以实现有弹性的可持续作物生产的挑战

Camilla Fagorzi, Iacopo Passeri, Lisa Cangioli, Francesca Vaccaro, Alessio Mengoni
{"title":"当生物多样性保护与生物技术相遇:开发合成微生物群以实现有弹性的可持续作物生产的挑战","authors":"Camilla Fagorzi,&nbsp;Iacopo Passeri,&nbsp;Lisa Cangioli,&nbsp;Francesca Vaccaro,&nbsp;Alessio Mengoni","doi":"10.1002/sae2.12038","DOIUrl":null,"url":null,"abstract":"<p>Agriculture needs to develop novel strategies and practices to meet the increasing global food demand, in an ecological and economical sustainable framework. The plant-associated microbiota is gaining increasing attention as part of these strategies since it strongly contributes to plant health, nutrition, and resilience to environmental perturbations. However, plant domestication has brought to the reduction of the plant abilities to recruit a beneficial microbiota. It is becoming clear that successful use of the plant microbiota requires a multifaceted approach where microbiologist, geneticists, plant scientists, agronomists, and computational biologists can develop ways and solutions to modify both the plant microbiota and plant's ability to recruit it, directed to increase crop performances. Here, while briefly reviewing the state-of-the-art in plant microbiota research, we focus the attention on the need to discover, understand and use the microbiota associated with wild relatives of crops and with neglected crops, which harbour the microbiota biodiversity needed for developing efficient bioinoculant solutions. In particular, we emphasize the convergence of in situ plant biodiversity preservation with microbiome preservation, which provides added value to nature and habitat conservation, as living collections of microbiome biodiversity. The heuristic value of bioinoculants (viz., synthetic communities) and the need of proper computational models to predict the outcome of their applications is also discussed toward a systems-biology-guided synthetic microbiota development.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12038","citationCount":"1","resultStr":"{\"title\":\"When biodiversity preservation meets biotechnology: The challenge of developing synthetic microbiota for resilient sustainable crop production\",\"authors\":\"Camilla Fagorzi,&nbsp;Iacopo Passeri,&nbsp;Lisa Cangioli,&nbsp;Francesca Vaccaro,&nbsp;Alessio Mengoni\",\"doi\":\"10.1002/sae2.12038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Agriculture needs to develop novel strategies and practices to meet the increasing global food demand, in an ecological and economical sustainable framework. The plant-associated microbiota is gaining increasing attention as part of these strategies since it strongly contributes to plant health, nutrition, and resilience to environmental perturbations. However, plant domestication has brought to the reduction of the plant abilities to recruit a beneficial microbiota. It is becoming clear that successful use of the plant microbiota requires a multifaceted approach where microbiologist, geneticists, plant scientists, agronomists, and computational biologists can develop ways and solutions to modify both the plant microbiota and plant's ability to recruit it, directed to increase crop performances. Here, while briefly reviewing the state-of-the-art in plant microbiota research, we focus the attention on the need to discover, understand and use the microbiota associated with wild relatives of crops and with neglected crops, which harbour the microbiota biodiversity needed for developing efficient bioinoculant solutions. In particular, we emphasize the convergence of in situ plant biodiversity preservation with microbiome preservation, which provides added value to nature and habitat conservation, as living collections of microbiome biodiversity. The heuristic value of bioinoculants (viz., synthetic communities) and the need of proper computational models to predict the outcome of their applications is also discussed toward a systems-biology-guided synthetic microbiota development.</p>\",\"PeriodicalId\":100834,\"journal\":{\"name\":\"Journal of Sustainable Agriculture and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.12038\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Agriculture and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sae2.12038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Agriculture and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sae2.12038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

农业需要在生态和经济可持续的框架内制定新的战略和做法,以满足日益增长的全球粮食需求。作为这些策略的一部分,与植物相关的微生物群越来越受到关注,因为它对植物健康、营养和对环境扰动的抵抗力有很大贡献。然而,植物驯化降低了植物吸收有益微生物群的能力。越来越清楚的是,成功利用植物微生物群需要一种多方面的方法,微生物学家、遗传学家、植物科学家、农学家和计算生物学家可以开发方法和解决方案来改变植物微生物群和植物吸收微生物群的能力,以提高作物性能。在这里,在简要回顾植物微生物群研究的最新进展的同时,我们将注意力集中在发现、理解和使用与作物的野生亲缘关系和被忽视的作物相关的微生物群的必要性上,这些微生物群蕴藏着开发高效生物接种剂解决方案所需的微生物群生物多样性。特别是,我们强调原位植物生物多样性保护与微生物组保护的融合,这为自然和栖息地保护提供了附加值,作为微生物组生物多样性的活集合。还讨论了生物接种物(即合成群落)的启发式价值以及预测其应用结果的适当计算模型的必要性,以实现系统生物学指导的合成微生物群开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
When biodiversity preservation meets biotechnology: The challenge of developing synthetic microbiota for resilient sustainable crop production

Agriculture needs to develop novel strategies and practices to meet the increasing global food demand, in an ecological and economical sustainable framework. The plant-associated microbiota is gaining increasing attention as part of these strategies since it strongly contributes to plant health, nutrition, and resilience to environmental perturbations. However, plant domestication has brought to the reduction of the plant abilities to recruit a beneficial microbiota. It is becoming clear that successful use of the plant microbiota requires a multifaceted approach where microbiologist, geneticists, plant scientists, agronomists, and computational biologists can develop ways and solutions to modify both the plant microbiota and plant's ability to recruit it, directed to increase crop performances. Here, while briefly reviewing the state-of-the-art in plant microbiota research, we focus the attention on the need to discover, understand and use the microbiota associated with wild relatives of crops and with neglected crops, which harbour the microbiota biodiversity needed for developing efficient bioinoculant solutions. In particular, we emphasize the convergence of in situ plant biodiversity preservation with microbiome preservation, which provides added value to nature and habitat conservation, as living collections of microbiome biodiversity. The heuristic value of bioinoculants (viz., synthetic communities) and the need of proper computational models to predict the outcome of their applications is also discussed toward a systems-biology-guided synthetic microbiota development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Influence of climate on soil viral communities in Australia on a regional scale Biodegradable plastic film mulch increases the mineralisation of organic amendments and prevents nitrate leaching during the growing season in organic vegetable production Pretreatment and fermentation of lignocellulose from oil palm fronds as a potential source of fibre for ruminant feed: a review Psyllium husk mucilage as a novel seed encapsulant for agriculture and reforestation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1