深度订单流失衡:从限额订单簿中提取多个层次的阿尔法

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE Mathematical Finance Pub Date : 2023-07-21 DOI:10.1111/mafi.12413
Petter N. Kolm, Jeremy Turiel, Nicholas Westray
{"title":"深度订单流失衡:从限额订单簿中提取多个层次的阿尔法","authors":"Petter N. Kolm,&nbsp;Jeremy Turiel,&nbsp;Nicholas Westray","doi":"10.1111/mafi.12413","DOIUrl":null,"url":null,"abstract":"<p>We employ deep learning in forecasting high-frequency returns at multiple horizons for 115 stocks traded on Nasdaq using order book information at the most granular level. While raw order book states can be used as input to the forecasting models, we achieve state-of-the-art predictive accuracy by training simpler “off-the-shelf” artificial neural networks on stationary inputs derived from the order book. Specifically, models trained on order flow significantly outperform most models trained directly on order books. Using cross-sectional regressions, we link the forecasting performance of a long short-term memory network to stock characteristics at the market microstructure level, suggesting that “information-rich” stocks can be predicted more accurately. Finally, we demonstrate that the effective horizon of stock specific forecasts is approximately two average price changes.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Deep order flow imbalance: Extracting alpha at multiple horizons from the limit order book\",\"authors\":\"Petter N. Kolm,&nbsp;Jeremy Turiel,&nbsp;Nicholas Westray\",\"doi\":\"10.1111/mafi.12413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We employ deep learning in forecasting high-frequency returns at multiple horizons for 115 stocks traded on Nasdaq using order book information at the most granular level. While raw order book states can be used as input to the forecasting models, we achieve state-of-the-art predictive accuracy by training simpler “off-the-shelf” artificial neural networks on stationary inputs derived from the order book. Specifically, models trained on order flow significantly outperform most models trained directly on order books. Using cross-sectional regressions, we link the forecasting performance of a long short-term memory network to stock characteristics at the market microstructure level, suggesting that “information-rich” stocks can be predicted more accurately. Finally, we demonstrate that the effective horizon of stock specific forecasts is approximately two average price changes.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12413\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12413","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 15

摘要

我们采用深度学习,使用最精细的订单簿信息预测纳斯达克115只股票在多个领域的高频回报。虽然原始订单簿状态可以用作预测模型的输入,但我们通过在订单簿的静态输入上训练更简单的“现成”人工神经网络来实现最先进的预测精度。具体来说,在订单流上训练的模型显著优于直接在订单簿上训练的大多数模型。使用横截面回归,我们将长短期记忆网络的预测性能与市场微观结构层面的股票特征联系起来,表明可以更准确地预测“信息丰富”的股票。最后,我们证明了股票特定预测的有效范围大约是两个平均价格变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep order flow imbalance: Extracting alpha at multiple horizons from the limit order book

We employ deep learning in forecasting high-frequency returns at multiple horizons for 115 stocks traded on Nasdaq using order book information at the most granular level. While raw order book states can be used as input to the forecasting models, we achieve state-of-the-art predictive accuracy by training simpler “off-the-shelf” artificial neural networks on stationary inputs derived from the order book. Specifically, models trained on order flow significantly outperform most models trained directly on order books. Using cross-sectional regressions, we link the forecasting performance of a long short-term memory network to stock characteristics at the market microstructure level, suggesting that “information-rich” stocks can be predicted more accurately. Finally, we demonstrate that the effective horizon of stock specific forecasts is approximately two average price changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
期刊最新文献
Issue Information Designing stablecoins Systemic risk in markets with multiple central counterparties Joint calibration to SPX and VIX options with signature‐based models Dynamic equilibrium with insider information and general uninformed agent utility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1