{"title":"利用块结构稀疏贝叶斯学习探索无线电断层成像中的空间相关性","authors":"Jiaju Tan, Xin Zhao, Xuemei Guo, Guoli Wang","doi":"10.1049/sil2.12185","DOIUrl":null,"url":null,"abstract":"<p>Radio Tomographic Imaging (RTI) is a low-cost computational imaging method realised by the Radio Frequency (RF) signal sensing. The target-induced shadowing effect in the RF sensing network is reconstructed as a probability image to estimate the target's position. Then, the RTI-based Device-free Localization (DFL) is becoming a promising research topic in the Location-based Services applications by the Internet of Things (IoT). However, the multipath interference in the RF sensing network often induces the imaging degradation and decreases the DFL accuracy. To deal with the multipath-induced imaging degradation, considering that the target's shadowing occupies a small spatial range in the RF network and expresses some spatial structure, this article explores the spatial correlation in the target's shadowing. Then, a new RTI reconstruction method based on the Structured Sparse Bayesian Learning is proposed to model the spatial correlation implied in the sparse target's shadowing image. Further, the localisation experiments in actual scenes are conducted to validate the utilisation of the spatial correlation in target's shadowing is able to improve the imaging quality of the RTI system by enhancing the robustness towards the multipath-induced imaging degradation.</p>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"17 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12185","citationCount":"0","resultStr":"{\"title\":\"Exploring the spatial correlation in radio tomographic imaging by block-structured sparse Bayesian learning\",\"authors\":\"Jiaju Tan, Xin Zhao, Xuemei Guo, Guoli Wang\",\"doi\":\"10.1049/sil2.12185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radio Tomographic Imaging (RTI) is a low-cost computational imaging method realised by the Radio Frequency (RF) signal sensing. The target-induced shadowing effect in the RF sensing network is reconstructed as a probability image to estimate the target's position. Then, the RTI-based Device-free Localization (DFL) is becoming a promising research topic in the Location-based Services applications by the Internet of Things (IoT). However, the multipath interference in the RF sensing network often induces the imaging degradation and decreases the DFL accuracy. To deal with the multipath-induced imaging degradation, considering that the target's shadowing occupies a small spatial range in the RF network and expresses some spatial structure, this article explores the spatial correlation in the target's shadowing. Then, a new RTI reconstruction method based on the Structured Sparse Bayesian Learning is proposed to model the spatial correlation implied in the sparse target's shadowing image. Further, the localisation experiments in actual scenes are conducted to validate the utilisation of the spatial correlation in target's shadowing is able to improve the imaging quality of the RTI system by enhancing the robustness towards the multipath-induced imaging degradation.</p>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12185\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12185","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Exploring the spatial correlation in radio tomographic imaging by block-structured sparse Bayesian learning
Radio Tomographic Imaging (RTI) is a low-cost computational imaging method realised by the Radio Frequency (RF) signal sensing. The target-induced shadowing effect in the RF sensing network is reconstructed as a probability image to estimate the target's position. Then, the RTI-based Device-free Localization (DFL) is becoming a promising research topic in the Location-based Services applications by the Internet of Things (IoT). However, the multipath interference in the RF sensing network often induces the imaging degradation and decreases the DFL accuracy. To deal with the multipath-induced imaging degradation, considering that the target's shadowing occupies a small spatial range in the RF network and expresses some spatial structure, this article explores the spatial correlation in the target's shadowing. Then, a new RTI reconstruction method based on the Structured Sparse Bayesian Learning is proposed to model the spatial correlation implied in the sparse target's shadowing image. Further, the localisation experiments in actual scenes are conducted to validate the utilisation of the spatial correlation in target's shadowing is able to improve the imaging quality of the RTI system by enhancing the robustness towards the multipath-induced imaging degradation.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf