{"title":"环境反向散射通信的发展","authors":"Shujuan Chang, Yuan Ding","doi":"10.1049/mia2.12419","DOIUrl":null,"url":null,"abstract":"<p>Backscatter communication (BackCom), the underlying technology for modern-day Radio Frequency Identification, has been studied as a promising solution for future ultra-low power Internet-of-Things (IoT) applications. Its development has pushed the performance boundaries significantly, in terms of communication distance, data transmission rate, and power consumption. An up-to-date review of one branch of BackCom systems, namely Ambient BackCom, which utilises the already available ambient signals, instead of a dedicated radio frequency carrier in most of the BackCom works, to establish BackCom links is conducted. This further reduces the cost and complexity of the system and opens an opportunity for mass deployment.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"17 13","pages":"963-973"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12419","citationCount":"0","resultStr":"{\"title\":\"Development in ambient backscatter communications\",\"authors\":\"Shujuan Chang, Yuan Ding\",\"doi\":\"10.1049/mia2.12419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Backscatter communication (BackCom), the underlying technology for modern-day Radio Frequency Identification, has been studied as a promising solution for future ultra-low power Internet-of-Things (IoT) applications. Its development has pushed the performance boundaries significantly, in terms of communication distance, data transmission rate, and power consumption. An up-to-date review of one branch of BackCom systems, namely Ambient BackCom, which utilises the already available ambient signals, instead of a dedicated radio frequency carrier in most of the BackCom works, to establish BackCom links is conducted. This further reduces the cost and complexity of the system and opens an opportunity for mass deployment.</p>\",\"PeriodicalId\":13374,\"journal\":{\"name\":\"Iet Microwaves Antennas & Propagation\",\"volume\":\"17 13\",\"pages\":\"963-973\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12419\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Microwaves Antennas & Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12419\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12419","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Backscatter communication (BackCom), the underlying technology for modern-day Radio Frequency Identification, has been studied as a promising solution for future ultra-low power Internet-of-Things (IoT) applications. Its development has pushed the performance boundaries significantly, in terms of communication distance, data transmission rate, and power consumption. An up-to-date review of one branch of BackCom systems, namely Ambient BackCom, which utilises the already available ambient signals, instead of a dedicated radio frequency carrier in most of the BackCom works, to establish BackCom links is conducted. This further reduces the cost and complexity of the system and opens an opportunity for mass deployment.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf