{"title":"用于融合图像协调的语义感知视觉一致性网络","authors":"Huayan Yu, Hai Huang, Yueyan Zhu, Aoran Chen","doi":"10.1049/sil2.12219","DOIUrl":null,"url":null,"abstract":"<p>With a focus on integrated sensing, communication, and computation (ISCC) systems, multiple sensor devices collect information of different objects and upload it to data processing servers for fusion. Appearance gaps in composite images caused by distinct capture conditions can degrade the visual quality and affect the accuracy of other image processing and analysis results. The authors propose a fused-image harmonisation method that aims to eliminate appearance gaps among different objects. First, the authors modify a lightweight image harmonisation backbone and combined it with a pretrained segmentation model, in which the extracted semantic features were fed to both the encoder and decoder. Then the authors implement a semantic-related background-to-foreground style transfer by leveraging spatial separation adaptive instance normalisation (SAIN). To better preserve the input semantic information, the authors design a simple and effective semantic-aware adaptive denormalisation (SADE) module. Experimental results demonstrate that the authors’ proposed method achieves competitive performance on the iHarmony4 dataset and benefits from the harmonisation of fused images with incompatible appearance gaps.</p>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"17 6","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12219","citationCount":"0","resultStr":"{\"title\":\"Semantic-aware visual consistency network for fused image harmonisation\",\"authors\":\"Huayan Yu, Hai Huang, Yueyan Zhu, Aoran Chen\",\"doi\":\"10.1049/sil2.12219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With a focus on integrated sensing, communication, and computation (ISCC) systems, multiple sensor devices collect information of different objects and upload it to data processing servers for fusion. Appearance gaps in composite images caused by distinct capture conditions can degrade the visual quality and affect the accuracy of other image processing and analysis results. The authors propose a fused-image harmonisation method that aims to eliminate appearance gaps among different objects. First, the authors modify a lightweight image harmonisation backbone and combined it with a pretrained segmentation model, in which the extracted semantic features were fed to both the encoder and decoder. Then the authors implement a semantic-related background-to-foreground style transfer by leveraging spatial separation adaptive instance normalisation (SAIN). To better preserve the input semantic information, the authors design a simple and effective semantic-aware adaptive denormalisation (SADE) module. Experimental results demonstrate that the authors’ proposed method achieves competitive performance on the iHarmony4 dataset and benefits from the harmonisation of fused images with incompatible appearance gaps.</p>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12219\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12219\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12219","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Semantic-aware visual consistency network for fused image harmonisation
With a focus on integrated sensing, communication, and computation (ISCC) systems, multiple sensor devices collect information of different objects and upload it to data processing servers for fusion. Appearance gaps in composite images caused by distinct capture conditions can degrade the visual quality and affect the accuracy of other image processing and analysis results. The authors propose a fused-image harmonisation method that aims to eliminate appearance gaps among different objects. First, the authors modify a lightweight image harmonisation backbone and combined it with a pretrained segmentation model, in which the extracted semantic features were fed to both the encoder and decoder. Then the authors implement a semantic-related background-to-foreground style transfer by leveraging spatial separation adaptive instance normalisation (SAIN). To better preserve the input semantic information, the authors design a simple and effective semantic-aware adaptive denormalisation (SADE) module. Experimental results demonstrate that the authors’ proposed method achieves competitive performance on the iHarmony4 dataset and benefits from the harmonisation of fused images with incompatible appearance gaps.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf