Ekaterina G. Iashina, Wim G. Bouwman, Chris P. Duif, Robert Dalgliesh, Elena Y. Varfolomeeva, Rimma A. Pantina, Roman A. Kovalev, Natalia D. Fedorova, Sergey V. Grigoriev
{"title":"飞行时间自旋回波小角度中子散射在生物细胞核中的应用","authors":"Ekaterina G. Iashina, Wim G. Bouwman, Chris P. Duif, Robert Dalgliesh, Elena Y. Varfolomeeva, Rimma A. Pantina, Roman A. Kovalev, Natalia D. Fedorova, Sergey V. Grigoriev","doi":"10.1107/S1600576723007549","DOIUrl":null,"url":null,"abstract":"<p>The organization of chromatin in the nuclei of rat lymphocyte was studied by time-of-flight spin-echo small-angle neutron scattering (ToF-SESANS). The procedures of the measurements in ToF and monochromatic SESANS modes were compared. It is shown that the sensitivity of the ToF method is significantly higher than that of the monochromatic mode. As a result, the SESANS correlation function can always be extracted from the ToF measurement of polarization, while this is not always the case with the monochromatic mode. The applicability of SESANS to fractal objects at the micrometre scale is demonstrated. The SESANS correlation function is well fitted by the exponential decay <i>G</i>(<i>z</i>) = exp(−<i>z</i>/ξ) with the correlation length ξ = 3.7 ± 0.1 µm. The exponential decay of the SESANS correlation function can be connected to the logarithmic correlation function γ(<i>r</i>) = ln(<i>r</i>/ξ) and the cubic law of the scattering intensity <i>I</i>(<i>Q</i>) = <i>Q</i><sup>−3</sup>, which is in agreement with the concept of scattering from fractal objects. This finding is interpreted as evidence of a very specific logarithmic fractal structure of the large-scale organization of chromatin. The model of the logarithmic fractal is visualized as a hierarchical object obeying the volume-conservation principle at different scales.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"56 5","pages":"1512-1521"},"PeriodicalIF":5.2000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-of-flight spin-echo small-angle neutron scattering applied to biological cell nuclei\",\"authors\":\"Ekaterina G. Iashina, Wim G. Bouwman, Chris P. Duif, Robert Dalgliesh, Elena Y. Varfolomeeva, Rimma A. Pantina, Roman A. Kovalev, Natalia D. Fedorova, Sergey V. Grigoriev\",\"doi\":\"10.1107/S1600576723007549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The organization of chromatin in the nuclei of rat lymphocyte was studied by time-of-flight spin-echo small-angle neutron scattering (ToF-SESANS). The procedures of the measurements in ToF and monochromatic SESANS modes were compared. It is shown that the sensitivity of the ToF method is significantly higher than that of the monochromatic mode. As a result, the SESANS correlation function can always be extracted from the ToF measurement of polarization, while this is not always the case with the monochromatic mode. The applicability of SESANS to fractal objects at the micrometre scale is demonstrated. The SESANS correlation function is well fitted by the exponential decay <i>G</i>(<i>z</i>) = exp(−<i>z</i>/ξ) with the correlation length ξ = 3.7 ± 0.1 µm. The exponential decay of the SESANS correlation function can be connected to the logarithmic correlation function γ(<i>r</i>) = ln(<i>r</i>/ξ) and the cubic law of the scattering intensity <i>I</i>(<i>Q</i>) = <i>Q</i><sup>−3</sup>, which is in agreement with the concept of scattering from fractal objects. This finding is interpreted as evidence of a very specific logarithmic fractal structure of the large-scale organization of chromatin. The model of the logarithmic fractal is visualized as a hierarchical object obeying the volume-conservation principle at different scales.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"56 5\",\"pages\":\"1512-1521\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576723007549\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576723007549","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Time-of-flight spin-echo small-angle neutron scattering applied to biological cell nuclei
The organization of chromatin in the nuclei of rat lymphocyte was studied by time-of-flight spin-echo small-angle neutron scattering (ToF-SESANS). The procedures of the measurements in ToF and monochromatic SESANS modes were compared. It is shown that the sensitivity of the ToF method is significantly higher than that of the monochromatic mode. As a result, the SESANS correlation function can always be extracted from the ToF measurement of polarization, while this is not always the case with the monochromatic mode. The applicability of SESANS to fractal objects at the micrometre scale is demonstrated. The SESANS correlation function is well fitted by the exponential decay G(z) = exp(−z/ξ) with the correlation length ξ = 3.7 ± 0.1 µm. The exponential decay of the SESANS correlation function can be connected to the logarithmic correlation function γ(r) = ln(r/ξ) and the cubic law of the scattering intensity I(Q) = Q−3, which is in agreement with the concept of scattering from fractal objects. This finding is interpreted as evidence of a very specific logarithmic fractal structure of the large-scale organization of chromatin. The model of the logarithmic fractal is visualized as a hierarchical object obeying the volume-conservation principle at different scales.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.