一种具有保证信息实用性的多敏感属性数据发布方法

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE CAAI Transactions on Intelligence Technology Pub Date : 2023-05-27 DOI:10.1049/cit2.12235
Haibin Zhu, Tong Yi, Songtao Shang, Minyong Shi, Zhucheng Li, Wenqian Shang
{"title":"一种具有保证信息实用性的多敏感属性数据发布方法","authors":"Haibin Zhu,&nbsp;Tong Yi,&nbsp;Songtao Shang,&nbsp;Minyong Shi,&nbsp;Zhucheng Li,&nbsp;Wenqian Shang","doi":"10.1049/cit2.12235","DOIUrl":null,"url":null,"abstract":"<p>Data publishing methods can provide available information for analysis while preserving privacy. The multiple sensitive attributes data publishing, which preserves the relationship between sensitive attributes, may keep many records from being grouped and bring in a high record suppression ratio. Another category of multiple sensitive attributes data publishing, which reduces the possibility of record suppression by breaking the relationship between sensitive attributes, cannot provide the sensitive attributes association for analysis. Hence, the existing multiple sensitive attributes data publishing fails to fully account for the comprehensive information utility. To acquire a guaranteed information utility, this article defines comprehensive information loss that considers both the suppression of records and the relationship between sensitive attributes. A heuristic method is leveraged to discover the optimal anonymity scheme that has the lowest comprehensive information loss. The experimental results verify the practice of the proposed data publishing method with multiple sensitive attributes. The proposed method can guarantee information utility when compared with previous ones.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"8 2","pages":"288-296"},"PeriodicalIF":8.4000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12235","citationCount":"0","resultStr":"{\"title\":\"A multiple sensitive attributes data publishing method with guaranteed information utility\",\"authors\":\"Haibin Zhu,&nbsp;Tong Yi,&nbsp;Songtao Shang,&nbsp;Minyong Shi,&nbsp;Zhucheng Li,&nbsp;Wenqian Shang\",\"doi\":\"10.1049/cit2.12235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data publishing methods can provide available information for analysis while preserving privacy. The multiple sensitive attributes data publishing, which preserves the relationship between sensitive attributes, may keep many records from being grouped and bring in a high record suppression ratio. Another category of multiple sensitive attributes data publishing, which reduces the possibility of record suppression by breaking the relationship between sensitive attributes, cannot provide the sensitive attributes association for analysis. Hence, the existing multiple sensitive attributes data publishing fails to fully account for the comprehensive information utility. To acquire a guaranteed information utility, this article defines comprehensive information loss that considers both the suppression of records and the relationship between sensitive attributes. A heuristic method is leveraged to discover the optimal anonymity scheme that has the lowest comprehensive information loss. The experimental results verify the practice of the proposed data publishing method with multiple sensitive attributes. The proposed method can guarantee information utility when compared with previous ones.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"8 2\",\"pages\":\"288-296\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12235\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12235\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12235","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数据发布方法可以在保护隐私的同时提供用于分析的可用信息。多敏感属性数据发布保留了敏感属性之间的关系,可以防止许多记录被分组,并带来高的记录抑制率。另一类多敏感属性数据发布,通过打破敏感属性之间的关系来降低记录抑制的可能性,无法提供敏感属性关联进行分析。因此,现有的多敏感属性数据发布未能充分考虑信息的综合效用。为了获得有保证的信息实用性,本文定义了综合信息损失,同时考虑了记录的抑制和敏感属性之间的关系。利用启发式方法来发现具有最低综合信息损失的最优匿名方案。实验结果验证了所提出的具有多个敏感属性的数据发布方法的实用性。与以前的方法相比,该方法能够保证信息的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multiple sensitive attributes data publishing method with guaranteed information utility

Data publishing methods can provide available information for analysis while preserving privacy. The multiple sensitive attributes data publishing, which preserves the relationship between sensitive attributes, may keep many records from being grouped and bring in a high record suppression ratio. Another category of multiple sensitive attributes data publishing, which reduces the possibility of record suppression by breaking the relationship between sensitive attributes, cannot provide the sensitive attributes association for analysis. Hence, the existing multiple sensitive attributes data publishing fails to fully account for the comprehensive information utility. To acquire a guaranteed information utility, this article defines comprehensive information loss that considers both the suppression of records and the relationship between sensitive attributes. A heuristic method is leveraged to discover the optimal anonymity scheme that has the lowest comprehensive information loss. The experimental results verify the practice of the proposed data publishing method with multiple sensitive attributes. The proposed method can guarantee information utility when compared with previous ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
期刊最新文献
Guest Editorial: Knowledge-based deep learning system in bio-medicine Guest Editorial: Special issue on trustworthy machine learning for behavioural and social computing A fault-tolerant and scalable boosting method over vertically partitioned data Multi-objective interval type-2 fuzzy linear programming problem with vagueness in coefficient Prediction and optimisation of gasoline quality in petroleum refining: The use of machine learning model as a surrogate in optimisation framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1