基于光滑copula的加拿大中东部极端降雨广义极值模型和空间插值

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2023-02-11 DOI:10.1002/env.2795
Fatima Palacios-Rodriguez, Elena Di Bernardino, Melina Mailhot
{"title":"基于光滑copula的加拿大中东部极端降雨广义极值模型和空间插值","authors":"Fatima Palacios-Rodriguez,&nbsp;Elena Di Bernardino,&nbsp;Melina Mailhot","doi":"10.1002/env.2795","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a smooth copula-based Generalized Extreme Value (GEV) model to map and predict extreme rainfall in Central Eastern Canada. The considered data contains a large portion of missing values, and one observes several nonconcomitant record periods at different stations. The proposed two-step approach combines GEV parameters' smooth functions in space through the use of spatial covariates and a flexible hierarchical copula-based model to take into account dependence between the recording stations. The hierarchical copula structure is detected via a clustering algorithm implemented with an adapted version of the copula-based dissimilarity measure recently introduced in the literature. Finally, we compare the classical GEV parameter interpolation approaches with the proposed smooth copula-based GEV modeling approach.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2795","citationCount":"2","resultStr":"{\"title\":\"Smooth copula-based generalized extreme value model and spatial interpolation for extreme rainfall in Central Eastern Canada\",\"authors\":\"Fatima Palacios-Rodriguez,&nbsp;Elena Di Bernardino,&nbsp;Melina Mailhot\",\"doi\":\"10.1002/env.2795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a smooth copula-based Generalized Extreme Value (GEV) model to map and predict extreme rainfall in Central Eastern Canada. The considered data contains a large portion of missing values, and one observes several nonconcomitant record periods at different stations. The proposed two-step approach combines GEV parameters' smooth functions in space through the use of spatial covariates and a flexible hierarchical copula-based model to take into account dependence between the recording stations. The hierarchical copula structure is detected via a clustering algorithm implemented with an adapted version of the copula-based dissimilarity measure recently introduced in the literature. Finally, we compare the classical GEV parameter interpolation approaches with the proposed smooth copula-based GEV modeling approach.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"34 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2795\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2795\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2795","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一个基于光滑copula的广义极值(GEV)模型来绘制和预测加拿大中东部的极端降雨。所考虑的数据包含大量缺失值,人们在不同的台站观察到了几个不一致的记录周期。所提出的两步方法通过使用空间协变量和灵活的基于copula的分层模型,结合了GEV参数在空间中的平滑函数,以考虑记录站之间的相关性。分层copula结构是通过聚类算法检测的,该算法是用文献中最近引入的基于copula的相异性度量的自适应版本实现的。最后,我们将经典的GEV参数插值方法与所提出的基于光滑copula的GEV建模方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smooth copula-based generalized extreme value model and spatial interpolation for extreme rainfall in Central Eastern Canada

This paper proposes a smooth copula-based Generalized Extreme Value (GEV) model to map and predict extreme rainfall in Central Eastern Canada. The considered data contains a large portion of missing values, and one observes several nonconcomitant record periods at different stations. The proposed two-step approach combines GEV parameters' smooth functions in space through the use of spatial covariates and a flexible hierarchical copula-based model to take into account dependence between the recording stations. The hierarchical copula structure is detected via a clustering algorithm implemented with an adapted version of the copula-based dissimilarity measure recently introduced in the literature. Finally, we compare the classical GEV parameter interpolation approaches with the proposed smooth copula-based GEV modeling approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1