Anna Robinson, Elaine Tao, Teresa Neeman, Benjamin Kaehler, Ben Corry
{"title":"骨骼肌钠通道NaV1.4的DIS5-S6细胞外连接子的建模研究和分子动力学模拟的新见解","authors":"Anna Robinson, Elaine Tao, Teresa Neeman, Benjamin Kaehler, Ben Corry","doi":"10.1002/bip.23540","DOIUrl":null,"url":null,"abstract":"<p>In the CryoEM-structure of the <i>hSkMNaV1.4</i> ion channel (PDB:6AGF), the 59-residue DI<sub>S5-S6</sub> linker peptide was omitted due to absence of electron density. This peptide is intriguing – comprised of unique sequence and found only in mammalian skeletal muscle sodium ion channels. To probe potential physiological and evolutionary significance, we constructed an homology model of the complete <i>hSkMNaV1.4</i> channel. Rather than a flexible random coil potentiating drift across the channel, the linker folds into a compact configuration through self-assembling secondary structural elements. Analogous sequences from 48 mammalian organisms show hypervariability with between 40% and 100% sequence similarity. To investigate structural implications, sequences from 14 representative organisms were additionally modelled. All showed highly conserved N-and C-terminal residues closely superimposed, suggesting a critical functional role. An optimally located asparagine residue within the conserved region was investigated for N-linked glycosylation and MD simulations carried out. Results suggest a complex glycan added at this site in the linker may form electrostatic interactions with the DIV voltage sensing domain and be mechanistically involved in channel gating. The relationship of unique sequence, compact configuration, potential glycosylation and MD simulations are discussed relative to <i>SkMNaV1.4</i> structure and function.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23540","citationCount":"0","resultStr":"{\"title\":\"New insights from modelling studies and molecular dynamics simulations of the DIS5-S6 extracellular linker of the skeletal muscle sodium channel NaV1.4\",\"authors\":\"Anna Robinson, Elaine Tao, Teresa Neeman, Benjamin Kaehler, Ben Corry\",\"doi\":\"10.1002/bip.23540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the CryoEM-structure of the <i>hSkMNaV1.4</i> ion channel (PDB:6AGF), the 59-residue DI<sub>S5-S6</sub> linker peptide was omitted due to absence of electron density. This peptide is intriguing – comprised of unique sequence and found only in mammalian skeletal muscle sodium ion channels. To probe potential physiological and evolutionary significance, we constructed an homology model of the complete <i>hSkMNaV1.4</i> channel. Rather than a flexible random coil potentiating drift across the channel, the linker folds into a compact configuration through self-assembling secondary structural elements. Analogous sequences from 48 mammalian organisms show hypervariability with between 40% and 100% sequence similarity. To investigate structural implications, sequences from 14 representative organisms were additionally modelled. All showed highly conserved N-and C-terminal residues closely superimposed, suggesting a critical functional role. An optimally located asparagine residue within the conserved region was investigated for N-linked glycosylation and MD simulations carried out. Results suggest a complex glycan added at this site in the linker may form electrostatic interactions with the DIV voltage sensing domain and be mechanistically involved in channel gating. The relationship of unique sequence, compact configuration, potential glycosylation and MD simulations are discussed relative to <i>SkMNaV1.4</i> structure and function.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\"114 7\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23540\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.23540\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23540","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
New insights from modelling studies and molecular dynamics simulations of the DIS5-S6 extracellular linker of the skeletal muscle sodium channel NaV1.4
In the CryoEM-structure of the hSkMNaV1.4 ion channel (PDB:6AGF), the 59-residue DIS5-S6 linker peptide was omitted due to absence of electron density. This peptide is intriguing – comprised of unique sequence and found only in mammalian skeletal muscle sodium ion channels. To probe potential physiological and evolutionary significance, we constructed an homology model of the complete hSkMNaV1.4 channel. Rather than a flexible random coil potentiating drift across the channel, the linker folds into a compact configuration through self-assembling secondary structural elements. Analogous sequences from 48 mammalian organisms show hypervariability with between 40% and 100% sequence similarity. To investigate structural implications, sequences from 14 representative organisms were additionally modelled. All showed highly conserved N-and C-terminal residues closely superimposed, suggesting a critical functional role. An optimally located asparagine residue within the conserved region was investigated for N-linked glycosylation and MD simulations carried out. Results suggest a complex glycan added at this site in the linker may form electrostatic interactions with the DIV voltage sensing domain and be mechanistically involved in channel gating. The relationship of unique sequence, compact configuration, potential glycosylation and MD simulations are discussed relative to SkMNaV1.4 structure and function.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.