废锰酸锂再生成阳离子掺杂和缺氧MnO2阴极,实现超长寿命和宽耐温水性锌离子电池

Qi Yao, Fuyu Xiao, Chuyuan Lin, Peixun Xiong, Wenbin Lai, Jixiang Zhang, Hun Xue, Xiaoli Sun, Mingdeng Wei, Qingrong Qian, Lingxing Zeng, Qinghua Chen
{"title":"废锰酸锂再生成阳离子掺杂和缺氧MnO2阴极,实现超长寿命和宽耐温水性锌离子电池","authors":"Qi Yao,&nbsp;Fuyu Xiao,&nbsp;Chuyuan Lin,&nbsp;Peixun Xiong,&nbsp;Wenbin Lai,&nbsp;Jixiang Zhang,&nbsp;Hun Xue,&nbsp;Xiaoli Sun,&nbsp;Mingdeng Wei,&nbsp;Qingrong Qian,&nbsp;Lingxing Zeng,&nbsp;Qinghua Chen","doi":"10.1002/bte2.20220065","DOIUrl":null,"url":null,"abstract":"<p>Manganese-based compounds have been regarded as the most promising cathode materials for rechargeable aqueous zinc-ion batteries (AZIBs) due to their high theoretical capacity. Unfortunately, aqueous Zn–manganese dioxide (MnO<sub>2</sub>) batteries have poor cycling stability and are unstable across a wide temperature range, severely limiting their commercial application. Cationic preinsertion and defect engineering might increase active sites and electron delocalization, which render the high mobility of the MnO<sub>2</sub> cathode when operated across a wide temperature range. In the present work, for the first time, we successfully introduced lithium ions and ammonium ions into manganese dioxide (LNMO<sub>d</sub>@CC) by an electrodeposition combined with low-temperature calcination route using spent lithium manganate as a raw material. The obtained LNMO<sub>d</sub>@CC exhibits a high reversible capacity (300 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>) and an outstanding long lifespan of over 9000 cycles at 5.0 A g<sup>−1</sup> with a capacity of 152 mAh g<sup>−1</sup>, which is significant for both the high-value recycling of spent lithium manganate batteries and high-performance modification for MnO<sub>2</sub> cathodes. Besides, the LNMO<sub>d</sub>@CC demonstrates excellent electrochemical performance across wide temperature ranges (0–50°C). This strategy simultaneously alleviates the shortage of raw materials and fabricates electrodes for new battery systems. This work provides a new strategy for recovering cathode materials of spent lithium-ion batteries and designing aqueous multivalent ion batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20220065","citationCount":"5","resultStr":"{\"title\":\"Regeneration of spent lithium manganate into cation-doped and oxygen-deficient MnO2 cathodes toward ultralong lifespan and wide-temperature-tolerant aqueous Zn-ion batteries\",\"authors\":\"Qi Yao,&nbsp;Fuyu Xiao,&nbsp;Chuyuan Lin,&nbsp;Peixun Xiong,&nbsp;Wenbin Lai,&nbsp;Jixiang Zhang,&nbsp;Hun Xue,&nbsp;Xiaoli Sun,&nbsp;Mingdeng Wei,&nbsp;Qingrong Qian,&nbsp;Lingxing Zeng,&nbsp;Qinghua Chen\",\"doi\":\"10.1002/bte2.20220065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Manganese-based compounds have been regarded as the most promising cathode materials for rechargeable aqueous zinc-ion batteries (AZIBs) due to their high theoretical capacity. Unfortunately, aqueous Zn–manganese dioxide (MnO<sub>2</sub>) batteries have poor cycling stability and are unstable across a wide temperature range, severely limiting their commercial application. Cationic preinsertion and defect engineering might increase active sites and electron delocalization, which render the high mobility of the MnO<sub>2</sub> cathode when operated across a wide temperature range. In the present work, for the first time, we successfully introduced lithium ions and ammonium ions into manganese dioxide (LNMO<sub>d</sub>@CC) by an electrodeposition combined with low-temperature calcination route using spent lithium manganate as a raw material. The obtained LNMO<sub>d</sub>@CC exhibits a high reversible capacity (300 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>) and an outstanding long lifespan of over 9000 cycles at 5.0 A g<sup>−1</sup> with a capacity of 152 mAh g<sup>−1</sup>, which is significant for both the high-value recycling of spent lithium manganate batteries and high-performance modification for MnO<sub>2</sub> cathodes. Besides, the LNMO<sub>d</sub>@CC demonstrates excellent electrochemical performance across wide temperature ranges (0–50°C). This strategy simultaneously alleviates the shortage of raw materials and fabricates electrodes for new battery systems. This work provides a new strategy for recovering cathode materials of spent lithium-ion batteries and designing aqueous multivalent ion batteries.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20220065\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20220065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20220065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

锰基化合物由于其高理论容量而被认为是可再充电水性锌离子电池(AZIB)最有前途的阴极材料。不幸的是,水性锌-二氧化锰(MnO2)电池的循环稳定性较差,在较宽的温度范围内不稳定,严重限制了其商业应用。阳离子预插入和缺陷工程可能会增加活性位点和电子离域,这使得MnO2阴极在宽温度范围内工作时具有高迁移率。在目前的工作中,我们首次成功地将锂离子和铵离子引入二氧化锰(LNMOd@CC)以废锰酸锂为原料,通过电沉积结合低温煅烧路线。获得的LNMOd@CC显示出高的可逆容量(300 毫安时 g−1在1 A. g−1),并且在5.0下具有超过9000次循环的卓越长寿命 A. g−1,容量为152 毫安时 g−1,这对于废锰酸锂电池的高价值回收和MnO2阴极的高性能改性都具有重要意义。此外LNMOd@CC在较宽的温度范围(0-50°C)内表现出优异的电化学性能。这种策略同时缓解了原材料的短缺,并为新的电池系统制造了电极。这项工作为回收废旧锂离子电池的正极材料和设计水性多价离子电池提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regeneration of spent lithium manganate into cation-doped and oxygen-deficient MnO2 cathodes toward ultralong lifespan and wide-temperature-tolerant aqueous Zn-ion batteries

Manganese-based compounds have been regarded as the most promising cathode materials for rechargeable aqueous zinc-ion batteries (AZIBs) due to their high theoretical capacity. Unfortunately, aqueous Zn–manganese dioxide (MnO2) batteries have poor cycling stability and are unstable across a wide temperature range, severely limiting their commercial application. Cationic preinsertion and defect engineering might increase active sites and electron delocalization, which render the high mobility of the MnO2 cathode when operated across a wide temperature range. In the present work, for the first time, we successfully introduced lithium ions and ammonium ions into manganese dioxide (LNMOd@CC) by an electrodeposition combined with low-temperature calcination route using spent lithium manganate as a raw material. The obtained LNMOd@CC exhibits a high reversible capacity (300 mAh g−1 at 1 A g−1) and an outstanding long lifespan of over 9000 cycles at 5.0 A g−1 with a capacity of 152 mAh g−1, which is significant for both the high-value recycling of spent lithium manganate batteries and high-performance modification for MnO2 cathodes. Besides, the LNMOd@CC demonstrates excellent electrochemical performance across wide temperature ranges (0–50°C). This strategy simultaneously alleviates the shortage of raw materials and fabricates electrodes for new battery systems. This work provides a new strategy for recovering cathode materials of spent lithium-ion batteries and designing aqueous multivalent ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 3, Issue 6, November 2024 Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors Manipulation in the In Situ Growth Design Parameters of Aqueous Zinc-Based Electrodes for Batteries: The Fundamentals and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1