检测混合采样率数据序列的变化

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2022-09-26 DOI:10.1002/env.2762
Aaron Paul Lowther, Rebecca Killick, Idris Arthur Eckley
{"title":"检测混合采样率数据序列的变化","authors":"Aaron Paul Lowther,&nbsp;Rebecca Killick,&nbsp;Idris Arthur Eckley","doi":"10.1002/env.2762","DOIUrl":null,"url":null,"abstract":"<p>Different environmental variables are often monitored using different sampling rates; examples include half-hourly weather station measurements, daily <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> data, and six-day satellite data. Further when researchers want to combine the data into a single analysis this often requires data aggregation or down-scaling. When one is seeking to identify changes within multivariate data, the aggregation and/or down-scaling processes obscure the changes we seek. In this article, we propose a novel changepoint detection algorithm which can analyze multiple time series for co-occurring changepoints with potentially different sampling rates, without requiring preprocessing to a standard sampling scale. We demonstrate the algorithm on synthetic data before providing an example identifying simultaneous changes in multiple variables at a location on the Greenland ice sheet using synthetic aperture radar and weather station data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2762","citationCount":"2","resultStr":"{\"title\":\"Detecting changes in mixed-sampling rate data sequences\",\"authors\":\"Aaron Paul Lowther,&nbsp;Rebecca Killick,&nbsp;Idris Arthur Eckley\",\"doi\":\"10.1002/env.2762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Different environmental variables are often monitored using different sampling rates; examples include half-hourly weather station measurements, daily <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>CO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> data, and six-day satellite data. Further when researchers want to combine the data into a single analysis this often requires data aggregation or down-scaling. When one is seeking to identify changes within multivariate data, the aggregation and/or down-scaling processes obscure the changes we seek. In this article, we propose a novel changepoint detection algorithm which can analyze multiple time series for co-occurring changepoints with potentially different sampling rates, without requiring preprocessing to a standard sampling scale. We demonstrate the algorithm on synthetic data before providing an example identifying simultaneous changes in multiple variables at a location on the Greenland ice sheet using synthetic aperture radar and weather station data.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2762\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2762\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2762","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

经常使用不同的采样率来监测不同的环境变量;示例包括半小时气象站测量、每日CO2$${\mathrm{CO}}_2$$数据,以及六天卫星数据。此外,当研究人员想将数据组合成一个单一的分析时,这通常需要数据聚合或缩小规模。当人们试图识别多元数据中的变化时,聚合和/或缩小过程会掩盖我们所寻求的变化。在本文中,我们提出了一种新的变化点检测算法,该算法可以分析多个时间序列中具有潜在不同采样率的同时发生的变化点,而不需要对标准采样尺度进行预处理。我们在合成数据上演示了算法,然后提供了一个使用合成孔径雷达和气象站数据识别格陵兰冰盖某个位置多个变量同时变化的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting changes in mixed-sampling rate data sequences

Different environmental variables are often monitored using different sampling rates; examples include half-hourly weather station measurements, daily CO 2 $$ {\mathrm{CO}}_2 $$ data, and six-day satellite data. Further when researchers want to combine the data into a single analysis this often requires data aggregation or down-scaling. When one is seeking to identify changes within multivariate data, the aggregation and/or down-scaling processes obscure the changes we seek. In this article, we propose a novel changepoint detection algorithm which can analyze multiple time series for co-occurring changepoints with potentially different sampling rates, without requiring preprocessing to a standard sampling scale. We demonstrate the algorithm on synthetic data before providing an example identifying simultaneous changes in multiple variables at a location on the Greenland ice sheet using synthetic aperture radar and weather station data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1