Arfat Ahmad Khan, Rakesh Kumar Madendran, Usharani Thirunavukkarasu, Muhammad Faheem
{"title":"D2PAM:使用对抗性深度双补丁注意机制预测癫痫发作","authors":"Arfat Ahmad Khan, Rakesh Kumar Madendran, Usharani Thirunavukkarasu, Muhammad Faheem","doi":"10.1049/cit2.12261","DOIUrl":null,"url":null,"abstract":"<p>Epilepsy is considered as a serious brain disorder in which patients frequently experience seizures. The seizures are defined as the unexpected electrical changes in brain neural activity, which leads to unconsciousness. Existing researches made an intense effort for predicting the epileptic seizures using brain signal data. However, they faced difficulty in obtaining the patients' characteristics because the model's distribution turned to fake predictions, affecting the model's reliability. In addition, the existing prediction models have severe issues, such as overfitting and false positive rates. To overcome these existing issues, we propose a deep learning approach known as Deep dual-patch attention mechanism (<i>D</i><sup>2</sup><i>PAM</i>) for classifying the pre-ictal signals of people with Epilepsy based on the brain signals. Deep neural network is integrated with <i>D</i><sup>2</sup><i>PAM</i>, and it lowers the effect of differences between patients to predict ES. The multi-network design enhances the trained model's generalisability and stability efficiently. Also, the proposed model for processing the brain signal is designed to transform the signals into data blocks, which is appropriate for pre-ictal classification. The earlier warning of epilepsy with the proposed model obtains the auxiliary diagnosis. The data of real patients for the experiments provides the improved accuracy by <i>D</i><sup>2</sup><i>PAM</i> approximation compared to the existing techniques. To be more distinctive, the authors have analysed the performance of their work with five patients, and the accuracy comes out to be 95%, 97%, 99%, 99%, and 99% respectively. Overall, the numerical results unveil that the proposed work outperforms the existing models.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"8 3","pages":"755-769"},"PeriodicalIF":8.4000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12261","citationCount":"5","resultStr":"{\"title\":\"D2PAM: Epileptic seizures prediction using adversarial deep dual patch attention mechanism\",\"authors\":\"Arfat Ahmad Khan, Rakesh Kumar Madendran, Usharani Thirunavukkarasu, Muhammad Faheem\",\"doi\":\"10.1049/cit2.12261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Epilepsy is considered as a serious brain disorder in which patients frequently experience seizures. The seizures are defined as the unexpected electrical changes in brain neural activity, which leads to unconsciousness. Existing researches made an intense effort for predicting the epileptic seizures using brain signal data. However, they faced difficulty in obtaining the patients' characteristics because the model's distribution turned to fake predictions, affecting the model's reliability. In addition, the existing prediction models have severe issues, such as overfitting and false positive rates. To overcome these existing issues, we propose a deep learning approach known as Deep dual-patch attention mechanism (<i>D</i><sup>2</sup><i>PAM</i>) for classifying the pre-ictal signals of people with Epilepsy based on the brain signals. Deep neural network is integrated with <i>D</i><sup>2</sup><i>PAM</i>, and it lowers the effect of differences between patients to predict ES. The multi-network design enhances the trained model's generalisability and stability efficiently. Also, the proposed model for processing the brain signal is designed to transform the signals into data blocks, which is appropriate for pre-ictal classification. The earlier warning of epilepsy with the proposed model obtains the auxiliary diagnosis. The data of real patients for the experiments provides the improved accuracy by <i>D</i><sup>2</sup><i>PAM</i> approximation compared to the existing techniques. To be more distinctive, the authors have analysed the performance of their work with five patients, and the accuracy comes out to be 95%, 97%, 99%, 99%, and 99% respectively. Overall, the numerical results unveil that the proposed work outperforms the existing models.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"8 3\",\"pages\":\"755-769\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12261\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12261\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12261","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
D2PAM: Epileptic seizures prediction using adversarial deep dual patch attention mechanism
Epilepsy is considered as a serious brain disorder in which patients frequently experience seizures. The seizures are defined as the unexpected electrical changes in brain neural activity, which leads to unconsciousness. Existing researches made an intense effort for predicting the epileptic seizures using brain signal data. However, they faced difficulty in obtaining the patients' characteristics because the model's distribution turned to fake predictions, affecting the model's reliability. In addition, the existing prediction models have severe issues, such as overfitting and false positive rates. To overcome these existing issues, we propose a deep learning approach known as Deep dual-patch attention mechanism (D2PAM) for classifying the pre-ictal signals of people with Epilepsy based on the brain signals. Deep neural network is integrated with D2PAM, and it lowers the effect of differences between patients to predict ES. The multi-network design enhances the trained model's generalisability and stability efficiently. Also, the proposed model for processing the brain signal is designed to transform the signals into data blocks, which is appropriate for pre-ictal classification. The earlier warning of epilepsy with the proposed model obtains the auxiliary diagnosis. The data of real patients for the experiments provides the improved accuracy by D2PAM approximation compared to the existing techniques. To be more distinctive, the authors have analysed the performance of their work with five patients, and the accuracy comes out to be 95%, 97%, 99%, 99%, and 99% respectively. Overall, the numerical results unveil that the proposed work outperforms the existing models.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.