推断多元降雨时间序列高回报水平的稳定和

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2022-11-29 DOI:10.1002/env.2782
Gloria Buriticá, Philippe Naveau
{"title":"推断多元降雨时间序列高回报水平的稳定和","authors":"Gloria Buriticá,&nbsp;Philippe Naveau","doi":"10.1002/env.2782","DOIUrl":null,"url":null,"abstract":"<p>Heavy rainfall distributional modeling is essential in any impact studies linked to the water cycle, for example, flood risks. Still, statistical analyses that both take into account the temporal and multivariate nature of extreme rainfall are rare, and often, a complex de-clustering step is needed to make extreme rainfall temporally independent. A natural question is how to bypass this de-clustering in a multivariate context. To address this issue, we introduce the stable sums method. Our goal is to incorporate time and space extreme dependencies in the analysis of heavy tails. To reach our goal, we build on large deviations of regularly varying stationary time series. Numerical experiments demonstrate that our novel approach enhances return levels inference in two ways. First, it is robust concerning time dependencies. We implement it alike on independent and dependent observations. In the univariate setting, it improves the accuracy of confidence intervals compared to the main estimators requiring temporal de-clustering. Second, it thoughtfully integrates the spatial dependencies. In simulation, the multivariate stable sums method has a smaller mean squared error than its component-wise implementation. We apply our method to infer high return levels of daily fall precipitation amounts from a national network of weather stations in France.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2782","citationCount":"1","resultStr":"{\"title\":\"Stable sums to infer high return levels of multivariate rainfall time series\",\"authors\":\"Gloria Buriticá,&nbsp;Philippe Naveau\",\"doi\":\"10.1002/env.2782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heavy rainfall distributional modeling is essential in any impact studies linked to the water cycle, for example, flood risks. Still, statistical analyses that both take into account the temporal and multivariate nature of extreme rainfall are rare, and often, a complex de-clustering step is needed to make extreme rainfall temporally independent. A natural question is how to bypass this de-clustering in a multivariate context. To address this issue, we introduce the stable sums method. Our goal is to incorporate time and space extreme dependencies in the analysis of heavy tails. To reach our goal, we build on large deviations of regularly varying stationary time series. Numerical experiments demonstrate that our novel approach enhances return levels inference in two ways. First, it is robust concerning time dependencies. We implement it alike on independent and dependent observations. In the univariate setting, it improves the accuracy of confidence intervals compared to the main estimators requiring temporal de-clustering. Second, it thoughtfully integrates the spatial dependencies. In simulation, the multivariate stable sums method has a smaller mean squared error than its component-wise implementation. We apply our method to infer high return levels of daily fall precipitation amounts from a national network of weather stations in France.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2782\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2782\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2782","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

暴雨分布模型在任何与水循环相关的影响研究中都是至关重要的,例如洪水风险。尽管如此,同时考虑极端降雨的时间和多元性质的统计分析很少,而且通常需要复杂的去聚类步骤才能使极端降雨在时间上独立。一个自然的问题是如何在多变量环境中绕过这种去集群。为了解决这个问题,我们引入了稳定和方法。我们的目标是将时间和空间的极端依赖性纳入重尾的分析中。为了达到我们的目标,我们建立在有规律变化的平稳时间序列的大偏差之上。数值实验表明,我们的新方法从两个方面增强了返回水平推断。首先,它在时间依赖性方面是稳健的。我们在独立和独立观察的基础上同样执行这一规定。在单变量设置中,与需要时间去聚类的主要估计量相比,它提高了置信区间的准确性。其次,它深思熟虑地整合了空间依赖关系。在仿真中,多元稳定和方法的均方误差小于其分量实现。我们应用我们的方法从法国的国家气象站网络中推断出每日秋季降水量的高回报水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stable sums to infer high return levels of multivariate rainfall time series

Heavy rainfall distributional modeling is essential in any impact studies linked to the water cycle, for example, flood risks. Still, statistical analyses that both take into account the temporal and multivariate nature of extreme rainfall are rare, and often, a complex de-clustering step is needed to make extreme rainfall temporally independent. A natural question is how to bypass this de-clustering in a multivariate context. To address this issue, we introduce the stable sums method. Our goal is to incorporate time and space extreme dependencies in the analysis of heavy tails. To reach our goal, we build on large deviations of regularly varying stationary time series. Numerical experiments demonstrate that our novel approach enhances return levels inference in two ways. First, it is robust concerning time dependencies. We implement it alike on independent and dependent observations. In the univariate setting, it improves the accuracy of confidence intervals compared to the main estimators requiring temporal de-clustering. Second, it thoughtfully integrates the spatial dependencies. In simulation, the multivariate stable sums method has a smaller mean squared error than its component-wise implementation. We apply our method to infer high return levels of daily fall precipitation amounts from a national network of weather stations in France.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1