Baji Baba Shaik, Naresh Kumar Katari, Sreekanth B Jonnalagadda
{"title":"内刺激反应型纳米载体抗癌药物控释研究进展。","authors":"Baji Baba Shaik, Naresh Kumar Katari, Sreekanth B Jonnalagadda","doi":"10.4155/tde-2023-0041","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer disease is one of the most frequent life-threatening, with a high fatality rate worldwide. However, recent immunotherapy studies in various tumours have yielded unsatisfactory outcomes, with just a few individuals experiencing long-term responses. To overcome these issues, nowadays internal stimuli-responsive nanocarriers have been widely exploited to transport a wide range of active substances, including peptides, genes and medicines. These nanosystems could be chemically adjusted to produce target-based drug release at the target location, minimizing pathological and physiological difficulties while increasing therapeutic efficiency. This review highlights the various types of internal stimuli-responsive nanocarriers and applications in cancer diagnosis. This study can provide inspiration and impetus for exploiting more promising internal stimuli-responsive nanosystems for drug delivery.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"595-613"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal stimuli-responsive nanocarriers for controlled anti-cancer drug release: a review.\",\"authors\":\"Baji Baba Shaik, Naresh Kumar Katari, Sreekanth B Jonnalagadda\",\"doi\":\"10.4155/tde-2023-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer disease is one of the most frequent life-threatening, with a high fatality rate worldwide. However, recent immunotherapy studies in various tumours have yielded unsatisfactory outcomes, with just a few individuals experiencing long-term responses. To overcome these issues, nowadays internal stimuli-responsive nanocarriers have been widely exploited to transport a wide range of active substances, including peptides, genes and medicines. These nanosystems could be chemically adjusted to produce target-based drug release at the target location, minimizing pathological and physiological difficulties while increasing therapeutic efficiency. This review highlights the various types of internal stimuli-responsive nanocarriers and applications in cancer diagnosis. This study can provide inspiration and impetus for exploiting more promising internal stimuli-responsive nanosystems for drug delivery.</p>\",\"PeriodicalId\":22959,\"journal\":{\"name\":\"Therapeutic delivery\",\"volume\":\" \",\"pages\":\"595-613\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4155/tde-2023-0041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/tde-2023-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Internal stimuli-responsive nanocarriers for controlled anti-cancer drug release: a review.
Cancer disease is one of the most frequent life-threatening, with a high fatality rate worldwide. However, recent immunotherapy studies in various tumours have yielded unsatisfactory outcomes, with just a few individuals experiencing long-term responses. To overcome these issues, nowadays internal stimuli-responsive nanocarriers have been widely exploited to transport a wide range of active substances, including peptides, genes and medicines. These nanosystems could be chemically adjusted to produce target-based drug release at the target location, minimizing pathological and physiological difficulties while increasing therapeutic efficiency. This review highlights the various types of internal stimuli-responsive nanocarriers and applications in cancer diagnosis. This study can provide inspiration and impetus for exploiting more promising internal stimuli-responsive nanosystems for drug delivery.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.