类器官的冷冻保存。

IF 1 4区 生物学 Q3 BIOLOGY Cryo letters Pub Date : 2023-03-01
O Rogulska, J Havelkova, Y Petrenko
{"title":"类器官的冷冻保存。","authors":"O Rogulska, J Havelkova, Y Petrenko","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids represent indispensable opportunities for biomedicine, including drug discovery, cancer biology, regenerative and personalised medicine or tissue and organ transplantation. However, the lack of optimized preservation strategies limits the wide use of organoids in research or clinical fields. In this review, we present a short outline of the recent developments in organoid research and current cryopreservation strategies for organoid systems. While both vitrification and slow controlled freezing have been utilized for the cryopreservation of organoid structures or their precursor components, the controlled-rate slow freezing under protection of Me2SO remains the most common approach. The application of appropriate pre- or post-treatment strategies, like the addition of Rho-kinase or myosin inhibitors into cell culture or cryopreservation medium, can increase the recovery of complex organoid constructs post-thaw. However, the high complexity of the organoid structure and heterogeneity of cellular composition bring challenges associated with cryoprotectant distribution, distinct response of cells to the solution and freezing-induced injuries. The deficit of adequate quality control methods, which may ensure the assessment of organoid recovery in due term without prolonged re-cultivation process, represents another challenge limiting the reproducibility of current cryobanking technology. In this review, we attempt to assess the current demands and achievements in organoid cryopreservation and highlight the key questions to focus on during the development of organoid preservation technologies. Doi: 10.54680/fr23210110112.</p>","PeriodicalId":10937,"journal":{"name":"Cryo letters","volume":"44 2","pages":"65-75"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryopreservation of organoids.\",\"authors\":\"O Rogulska, J Havelkova, Y Petrenko\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organoids represent indispensable opportunities for biomedicine, including drug discovery, cancer biology, regenerative and personalised medicine or tissue and organ transplantation. However, the lack of optimized preservation strategies limits the wide use of organoids in research or clinical fields. In this review, we present a short outline of the recent developments in organoid research and current cryopreservation strategies for organoid systems. While both vitrification and slow controlled freezing have been utilized for the cryopreservation of organoid structures or their precursor components, the controlled-rate slow freezing under protection of Me2SO remains the most common approach. The application of appropriate pre- or post-treatment strategies, like the addition of Rho-kinase or myosin inhibitors into cell culture or cryopreservation medium, can increase the recovery of complex organoid constructs post-thaw. However, the high complexity of the organoid structure and heterogeneity of cellular composition bring challenges associated with cryoprotectant distribution, distinct response of cells to the solution and freezing-induced injuries. The deficit of adequate quality control methods, which may ensure the assessment of organoid recovery in due term without prolonged re-cultivation process, represents another challenge limiting the reproducibility of current cryobanking technology. In this review, we attempt to assess the current demands and achievements in organoid cryopreservation and highlight the key questions to focus on during the development of organoid preservation technologies. Doi: 10.54680/fr23210110112.</p>\",\"PeriodicalId\":10937,\"journal\":{\"name\":\"Cryo letters\",\"volume\":\"44 2\",\"pages\":\"65-75\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryo letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryo letters","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

类器官为生物医学提供了不可或缺的机会,包括药物发现、癌症生物学、再生和个性化医学或组织和器官移植。然而,缺乏优化的保存策略限制了类器官在研究或临床领域的广泛应用。在这篇综述中,我们简要介绍了类器官研究的最新进展和当前类器官系统的冷冻保存策略。虽然玻璃化和慢速控制冷冻都已用于类器官结构或其前体组分的冷冻保存,但在Me2SO的保护下控制速率慢速冷冻仍然是最常见的方法。适当的预处理或后处理策略的应用,如在细胞培养基或冷冻保存培养基中添加Rho激酶或肌球蛋白抑制剂,可以提高解冻后复杂类器官构建体的回收率。然而,类器官结构的高度复杂性和细胞组成的异质性给冷冻保护剂的分布、细胞对溶液的不同反应以及冷冻诱导的损伤带来了挑战。缺乏足够的质量控制方法,可以确保在不延长再培养过程的情况下在适当的时间内评估类有机物的回收率,这是限制当前冷冻库技术再现性的另一个挑战。在这篇综述中,我们试图评估类器官冷冻保存的当前需求和成就,并强调类器官保存技术发展过程中需要关注的关键问题。Doi:10.54680/fr23210110112。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cryopreservation of organoids.

Organoids represent indispensable opportunities for biomedicine, including drug discovery, cancer biology, regenerative and personalised medicine or tissue and organ transplantation. However, the lack of optimized preservation strategies limits the wide use of organoids in research or clinical fields. In this review, we present a short outline of the recent developments in organoid research and current cryopreservation strategies for organoid systems. While both vitrification and slow controlled freezing have been utilized for the cryopreservation of organoid structures or their precursor components, the controlled-rate slow freezing under protection of Me2SO remains the most common approach. The application of appropriate pre- or post-treatment strategies, like the addition of Rho-kinase or myosin inhibitors into cell culture or cryopreservation medium, can increase the recovery of complex organoid constructs post-thaw. However, the high complexity of the organoid structure and heterogeneity of cellular composition bring challenges associated with cryoprotectant distribution, distinct response of cells to the solution and freezing-induced injuries. The deficit of adequate quality control methods, which may ensure the assessment of organoid recovery in due term without prolonged re-cultivation process, represents another challenge limiting the reproducibility of current cryobanking technology. In this review, we attempt to assess the current demands and achievements in organoid cryopreservation and highlight the key questions to focus on during the development of organoid preservation technologies. Doi: 10.54680/fr23210110112.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryo letters
Cryo letters 生物-生理学
CiteScore
1.80
自引率
10.00%
发文量
50
审稿时长
1 months
期刊介绍: A bimonthly international journal for low temperature sciences, including cryobiology, cryopreservation or vitrification of cells and tissues, chemical and physical aspects of freezing and drying, and studies involving ecology of cold environments, and cold adaptation The journal publishes original research reports, authoritative reviews, technical developments and commissioned book reviews of studies of the effects produced by low temperatures on a wide variety of scientific and technical processes, or those involving low temperature techniques in the investigation of physical, chemical, biological and ecological problems.
期刊最新文献
Comparative study of percutaneous and transbronchial lung parenchyma cryoablation using a porcine model. Cryosurgery process applications - a mathematical review. Effect of cryoprotectant and concentration on the sperm quality of walking catfish, Clarias batrachus, post-cryopreservation. Effect of different concentrations of inulin on ram sperm quality during cryopreservation. Effects of vitrification on mitochondrial ultrastructure and membrane potential and its distribution in mouse oocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1