{"title":"通过智能手环的可控振动反馈的人际传递:力学和感知。","authors":"Taku Hachisu;Gregory Reardon;Yitian Shao;Kenji Suzuki;Yon Visell","doi":"10.1109/TOH.2023.3327394","DOIUrl":null,"url":null,"abstract":"The importance of interpersonal touch for social well-being is widely recognized, and haptic technology offers a promising avenue for augmenting these interactions. We presented smart bracelets that use vibrotactile feedback to augment social interactions, such as handshakes, by transmitting vibrations between two people. This work conducts mechanical and perceptual experiments to investigate key factors affecting the delivery of interpersonal vibrotactile feedback via bracelets. Our results show that low-frequency vibrations elicited through tangential actuation are efficiently transmitted from the wrist to the hand, with amplitude varying based on distance, frequency, and actuation direction. We also found that vibrations transmitted to different locations on the hand can be felt by a second person, with perceptual intensity correlated with oscillation magnitude at the touched location. Additionally, we demonstrate how wrist-interfaced devices can elicit spatial vibration patterns throughout the hand surface, which can be manipulated by the frequency and direction of actuation at the wrist. Our experiments provide important insights into the human factors associated with interpersonal vibrotactile feedback and have significant implications for the design of technologies that promote social well-being.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"372-383"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10296001","citationCount":"0","resultStr":"{\"title\":\"Interpersonal Transmission of Vibrotactile Feedback via Smart Bracelets: Mechanics and Perception\",\"authors\":\"Taku Hachisu;Gregory Reardon;Yitian Shao;Kenji Suzuki;Yon Visell\",\"doi\":\"10.1109/TOH.2023.3327394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of interpersonal touch for social well-being is widely recognized, and haptic technology offers a promising avenue for augmenting these interactions. We presented smart bracelets that use vibrotactile feedback to augment social interactions, such as handshakes, by transmitting vibrations between two people. This work conducts mechanical and perceptual experiments to investigate key factors affecting the delivery of interpersonal vibrotactile feedback via bracelets. Our results show that low-frequency vibrations elicited through tangential actuation are efficiently transmitted from the wrist to the hand, with amplitude varying based on distance, frequency, and actuation direction. We also found that vibrations transmitted to different locations on the hand can be felt by a second person, with perceptual intensity correlated with oscillation magnitude at the touched location. Additionally, we demonstrate how wrist-interfaced devices can elicit spatial vibration patterns throughout the hand surface, which can be manipulated by the frequency and direction of actuation at the wrist. Our experiments provide important insights into the human factors associated with interpersonal vibrotactile feedback and have significant implications for the design of technologies that promote social well-being.\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"17 3\",\"pages\":\"372-383\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10296001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10296001/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10296001/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Interpersonal Transmission of Vibrotactile Feedback via Smart Bracelets: Mechanics and Perception
The importance of interpersonal touch for social well-being is widely recognized, and haptic technology offers a promising avenue for augmenting these interactions. We presented smart bracelets that use vibrotactile feedback to augment social interactions, such as handshakes, by transmitting vibrations between two people. This work conducts mechanical and perceptual experiments to investigate key factors affecting the delivery of interpersonal vibrotactile feedback via bracelets. Our results show that low-frequency vibrations elicited through tangential actuation are efficiently transmitted from the wrist to the hand, with amplitude varying based on distance, frequency, and actuation direction. We also found that vibrations transmitted to different locations on the hand can be felt by a second person, with perceptual intensity correlated with oscillation magnitude at the touched location. Additionally, we demonstrate how wrist-interfaced devices can elicit spatial vibration patterns throughout the hand surface, which can be manipulated by the frequency and direction of actuation at the wrist. Our experiments provide important insights into the human factors associated with interpersonal vibrotactile feedback and have significant implications for the design of technologies that promote social well-being.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.