{"title":"维生素D受体的缺失通过DDIT4介导的DNA损伤触发慢性粒细胞白血病的衰老。","authors":"Yan Xu, Wentao Qi, Chengzu Zheng, Yuan Li, Zhiyuan Lu, Jianmin Guan, Chunhua Lu, Baobing Zhao","doi":"10.1093/jmcb/mjad066","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic myeloid leukemia (CML) is a hematopoietic malignancy driven by the fusion gene BCR::ABL1. Drug resistance to tyrosine kinase inhibitors (TKIs), due to BCR::ABL1 mutations and residual leukemia stem cells (LSCs), remains a major challenge in CML treatment. Here, we revealed the requirement of the vitamin D receptor (VDR) in the progression of CML. VDR was upregulated by BCR::ABL1 and highly expressed in CML cells. Interestingly, VDR knockdown inhibited the proliferation of CML cells driven by both BCR::ABL1 and TKI-resistant BCR::ABL1 mutations. Mechanistically, VDR transcriptionally regulated DDIT4 expression; reduced DDIT4 levels upon VDR knockdown triggered DNA damage and senescence via p53 signaling activation in CML cells. Furthermore, VDR deficiency not only suppressed tumor burden and progression in primary CML mice but also reduced the self-renewal capacity of CML-LSCs. Together, our study demonstrated that targeting VDR is a promising strategy to overcome TKI resistance and eradicate LSCs in CML.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190374/pdf/","citationCount":"0","resultStr":"{\"title\":\"Loss of the vitamin D receptor triggers senescence in chronic myeloid leukemia via DDIT4-mediated DNA damage.\",\"authors\":\"Yan Xu, Wentao Qi, Chengzu Zheng, Yuan Li, Zhiyuan Lu, Jianmin Guan, Chunhua Lu, Baobing Zhao\",\"doi\":\"10.1093/jmcb/mjad066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic myeloid leukemia (CML) is a hematopoietic malignancy driven by the fusion gene BCR::ABL1. Drug resistance to tyrosine kinase inhibitors (TKIs), due to BCR::ABL1 mutations and residual leukemia stem cells (LSCs), remains a major challenge in CML treatment. Here, we revealed the requirement of the vitamin D receptor (VDR) in the progression of CML. VDR was upregulated by BCR::ABL1 and highly expressed in CML cells. Interestingly, VDR knockdown inhibited the proliferation of CML cells driven by both BCR::ABL1 and TKI-resistant BCR::ABL1 mutations. Mechanistically, VDR transcriptionally regulated DDIT4 expression; reduced DDIT4 levels upon VDR knockdown triggered DNA damage and senescence via p53 signaling activation in CML cells. Furthermore, VDR deficiency not only suppressed tumor burden and progression in primary CML mice but also reduced the self-renewal capacity of CML-LSCs. Together, our study demonstrated that targeting VDR is a promising strategy to overcome TKI resistance and eradicate LSCs in CML.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190374/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjad066\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjad066","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Loss of the vitamin D receptor triggers senescence in chronic myeloid leukemia via DDIT4-mediated DNA damage.
Chronic myeloid leukemia (CML) is a hematopoietic malignancy driven by the fusion gene BCR::ABL1. Drug resistance to tyrosine kinase inhibitors (TKIs), due to BCR::ABL1 mutations and residual leukemia stem cells (LSCs), remains a major challenge in CML treatment. Here, we revealed the requirement of the vitamin D receptor (VDR) in the progression of CML. VDR was upregulated by BCR::ABL1 and highly expressed in CML cells. Interestingly, VDR knockdown inhibited the proliferation of CML cells driven by both BCR::ABL1 and TKI-resistant BCR::ABL1 mutations. Mechanistically, VDR transcriptionally regulated DDIT4 expression; reduced DDIT4 levels upon VDR knockdown triggered DNA damage and senescence via p53 signaling activation in CML cells. Furthermore, VDR deficiency not only suppressed tumor burden and progression in primary CML mice but also reduced the self-renewal capacity of CML-LSCs. Together, our study demonstrated that targeting VDR is a promising strategy to overcome TKI resistance and eradicate LSCs in CML.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.