{"title":"航空可持续能源载体综述:优势、挑战和未来可行性","authors":"Phillip J. Ansell","doi":"10.1016/j.paerosci.2023.100919","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainability has recently been identified as the greatest challenge facing the modern aviation field. Given the extreme power and energy characteristics of transport-class aircraft today,achieving sustainability goals across the aviation sector is a tremendous challenge when compared to other modes of transportation. Several key energy carriers have emerged, promising an environmentally sustainable aviation future. Those considered here include bio-jet fuel pathways for synthetic kerosene, power-to-liquid pathways for synthetic kerosene, liquid hydrogen, ammonia, liquid natural gas, ethanol, methanol, and battery electric systems, all of which are compared to conventional fossil-derived aviation turbine fuel. However, these alternate energy carriers bring forward significant technoeconomic considerations that must be addressed before such approaches can be viably implemented. These factors include material properties impacting aircraft performance and fuel handling, emissions, cost and scalability, resource and land requirements, and social impacts. The purpose of this review is to provide a summary of current approaches to alternative aviation energy carriers, which includes a discussion of key advantages, challenges, and implications determining the future viability of each approach. It is found that bio-jet fuels, power-to-liquid synthetic kerosene, liquid natural gas, and liquid hydrogen all have technical feasibility and can contribute to improved environmental outcomes. However, hydrocarbon fuels and non-renewable production pathways for carbon-free energy carriers are not viable permanent solutions for a fully sustainable aviation ecosystem. As a result, potential transition scenarios from fossil-derived aviation turbine fuel to synthetic kerosene, with simultaneous development for adoption of liquid hydrogen and battery-electric systems, are recommended.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"141 ","pages":"Article 100919"},"PeriodicalIF":11.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Review of sustainable energy carriers for aviation: Benefits, challenges, and future viability\",\"authors\":\"Phillip J. Ansell\",\"doi\":\"10.1016/j.paerosci.2023.100919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustainability has recently been identified as the greatest challenge facing the modern aviation field. Given the extreme power and energy characteristics of transport-class aircraft today,achieving sustainability goals across the aviation sector is a tremendous challenge when compared to other modes of transportation. Several key energy carriers have emerged, promising an environmentally sustainable aviation future. Those considered here include bio-jet fuel pathways for synthetic kerosene, power-to-liquid pathways for synthetic kerosene, liquid hydrogen, ammonia, liquid natural gas, ethanol, methanol, and battery electric systems, all of which are compared to conventional fossil-derived aviation turbine fuel. However, these alternate energy carriers bring forward significant technoeconomic considerations that must be addressed before such approaches can be viably implemented. These factors include material properties impacting aircraft performance and fuel handling, emissions, cost and scalability, resource and land requirements, and social impacts. The purpose of this review is to provide a summary of current approaches to alternative aviation energy carriers, which includes a discussion of key advantages, challenges, and implications determining the future viability of each approach. It is found that bio-jet fuels, power-to-liquid synthetic kerosene, liquid natural gas, and liquid hydrogen all have technical feasibility and can contribute to improved environmental outcomes. However, hydrocarbon fuels and non-renewable production pathways for carbon-free energy carriers are not viable permanent solutions for a fully sustainable aviation ecosystem. As a result, potential transition scenarios from fossil-derived aviation turbine fuel to synthetic kerosene, with simultaneous development for adoption of liquid hydrogen and battery-electric systems, are recommended.</p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"141 \",\"pages\":\"Article 100919\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042123000350\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042123000350","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Review of sustainable energy carriers for aviation: Benefits, challenges, and future viability
Sustainability has recently been identified as the greatest challenge facing the modern aviation field. Given the extreme power and energy characteristics of transport-class aircraft today,achieving sustainability goals across the aviation sector is a tremendous challenge when compared to other modes of transportation. Several key energy carriers have emerged, promising an environmentally sustainable aviation future. Those considered here include bio-jet fuel pathways for synthetic kerosene, power-to-liquid pathways for synthetic kerosene, liquid hydrogen, ammonia, liquid natural gas, ethanol, methanol, and battery electric systems, all of which are compared to conventional fossil-derived aviation turbine fuel. However, these alternate energy carriers bring forward significant technoeconomic considerations that must be addressed before such approaches can be viably implemented. These factors include material properties impacting aircraft performance and fuel handling, emissions, cost and scalability, resource and land requirements, and social impacts. The purpose of this review is to provide a summary of current approaches to alternative aviation energy carriers, which includes a discussion of key advantages, challenges, and implications determining the future viability of each approach. It is found that bio-jet fuels, power-to-liquid synthetic kerosene, liquid natural gas, and liquid hydrogen all have technical feasibility and can contribute to improved environmental outcomes. However, hydrocarbon fuels and non-renewable production pathways for carbon-free energy carriers are not viable permanent solutions for a fully sustainable aviation ecosystem. As a result, potential transition scenarios from fossil-derived aviation turbine fuel to synthetic kerosene, with simultaneous development for adoption of liquid hydrogen and battery-electric systems, are recommended.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.