Weijun Ren, Shuang Lu, Cuiqian Yu, Jia He, Zhongwei Zhang, Jie Chen, Gang Zhang
{"title":"莫尔维尔超晶格对范德华异质结构中原子应力和热输运的影响","authors":"Weijun Ren, Shuang Lu, Cuiqian Yu, Jia He, Zhongwei Zhang, Jie Chen, Gang Zhang","doi":"10.1063/5.0159598","DOIUrl":null,"url":null,"abstract":"Moiré superlattices and their interlayer interactions in van der Waals heterostructures have received surging attention for manipulating the properties of quantum materials. In this work, based on non-equilibrium molecular dynamics simulations, we find that the in-plane thermal conductivity of graphene/hexagonal boron nitride (h-BN) moiré superlattices decreases monotonically with the increase in the interlayer rotation angle within the small twisting range. The atomic stress amplitude exhibits the periodic distribution corresponding to a structural moiré pattern. Through the in-depth analysis at the atomic level, a competing mechanism between the magnitude and the directional change of the in-plane heat flow has been revealed, and the dominant role of directional change in determining the in-plane thermal conductivity of graphene/h-BN moiré superlattices at small rotation angle has also been confirmed. Finally, the monotonic decreasing trend of in-plane thermal conductivity at a small rotation angle is further explained by the reduced low-frequency phonon transmission and the blue shift of the transmission peak as the interlayer rotation angle increases. Our work provides the physical understanding of the moiré superlattice effect and a new approach for regulating the thermal conductivity of two-dimensional materials.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"8 7","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of moiré superlattice on atomic stress and thermal transport in van der Waals heterostructures\",\"authors\":\"Weijun Ren, Shuang Lu, Cuiqian Yu, Jia He, Zhongwei Zhang, Jie Chen, Gang Zhang\",\"doi\":\"10.1063/5.0159598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moiré superlattices and their interlayer interactions in van der Waals heterostructures have received surging attention for manipulating the properties of quantum materials. In this work, based on non-equilibrium molecular dynamics simulations, we find that the in-plane thermal conductivity of graphene/hexagonal boron nitride (h-BN) moiré superlattices decreases monotonically with the increase in the interlayer rotation angle within the small twisting range. The atomic stress amplitude exhibits the periodic distribution corresponding to a structural moiré pattern. Through the in-depth analysis at the atomic level, a competing mechanism between the magnitude and the directional change of the in-plane heat flow has been revealed, and the dominant role of directional change in determining the in-plane thermal conductivity of graphene/h-BN moiré superlattices at small rotation angle has also been confirmed. Finally, the monotonic decreasing trend of in-plane thermal conductivity at a small rotation angle is further explained by the reduced low-frequency phonon transmission and the blue shift of the transmission peak as the interlayer rotation angle increases. Our work provides the physical understanding of the moiré superlattice effect and a new approach for regulating the thermal conductivity of two-dimensional materials.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"8 7\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0159598\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0159598","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Impact of moiré superlattice on atomic stress and thermal transport in van der Waals heterostructures
Moiré superlattices and their interlayer interactions in van der Waals heterostructures have received surging attention for manipulating the properties of quantum materials. In this work, based on non-equilibrium molecular dynamics simulations, we find that the in-plane thermal conductivity of graphene/hexagonal boron nitride (h-BN) moiré superlattices decreases monotonically with the increase in the interlayer rotation angle within the small twisting range. The atomic stress amplitude exhibits the periodic distribution corresponding to a structural moiré pattern. Through the in-depth analysis at the atomic level, a competing mechanism between the magnitude and the directional change of the in-plane heat flow has been revealed, and the dominant role of directional change in determining the in-plane thermal conductivity of graphene/h-BN moiré superlattices at small rotation angle has also been confirmed. Finally, the monotonic decreasing trend of in-plane thermal conductivity at a small rotation angle is further explained by the reduced low-frequency phonon transmission and the blue shift of the transmission peak as the interlayer rotation angle increases. Our work provides the physical understanding of the moiré superlattice effect and a new approach for regulating the thermal conductivity of two-dimensional materials.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.