Jaclyn Durkin , Amy R. Poe , Samuel J. Belfer , Anyara Rodriguez , Si Hao Tang , James A. Walker , Matthew S. Kayser
{"title":"神经纤维蛋白1调节果蝇早期发育睡眠","authors":"Jaclyn Durkin , Amy R. Poe , Samuel J. Belfer , Anyara Rodriguez , Si Hao Tang , James A. Walker , Matthew S. Kayser","doi":"10.1016/j.nbscr.2023.100101","DOIUrl":null,"url":null,"abstract":"<div><p>Sleep disturbances are common in neurodevelopmental disorders, but knowledge of molecular factors that govern sleep in young animals is lacking. Evidence across species, including <em>Drosophila</em>, suggests that juvenile sleep has distinct functions and regulatory mechanisms in comparison to sleep in maturity. In flies, manipulation of most known adult sleep regulatory genes is not associated with sleep phenotypes during early developmental (larval) stages. Here, we examine the role of the neurodevelopmental disorder-associated gene <em>Neurofibromin 1</em> (<em>Nf1</em>) in sleep during numerous developmental periods. Mutations in <em>Neurofibromin 1</em> (<em>Nf1</em>) are associated with sleep and circadian disorders in humans and adult flies. We find in flies that <em>Nf1</em> acts to regulate sleep across the lifespan, beginning during larval stages. <em>Nf1</em> is required in neurons for this function, as is signaling via the Alk pathway. These findings identify <em>Nf1</em> as one of a small number of genes positioned to regulate sleep across developmental periods.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"15 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurofibromin 1 regulates early developmental sleep in Drosophila\",\"authors\":\"Jaclyn Durkin , Amy R. Poe , Samuel J. Belfer , Anyara Rodriguez , Si Hao Tang , James A. Walker , Matthew S. Kayser\",\"doi\":\"10.1016/j.nbscr.2023.100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sleep disturbances are common in neurodevelopmental disorders, but knowledge of molecular factors that govern sleep in young animals is lacking. Evidence across species, including <em>Drosophila</em>, suggests that juvenile sleep has distinct functions and regulatory mechanisms in comparison to sleep in maturity. In flies, manipulation of most known adult sleep regulatory genes is not associated with sleep phenotypes during early developmental (larval) stages. Here, we examine the role of the neurodevelopmental disorder-associated gene <em>Neurofibromin 1</em> (<em>Nf1</em>) in sleep during numerous developmental periods. Mutations in <em>Neurofibromin 1</em> (<em>Nf1</em>) are associated with sleep and circadian disorders in humans and adult flies. We find in flies that <em>Nf1</em> acts to regulate sleep across the lifespan, beginning during larval stages. <em>Nf1</em> is required in neurons for this function, as is signaling via the Alk pathway. These findings identify <em>Nf1</em> as one of a small number of genes positioned to regulate sleep across developmental periods.</p></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"15 \",\"pages\":\"Article 100101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994423000135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994423000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Neurofibromin 1 regulates early developmental sleep in Drosophila
Sleep disturbances are common in neurodevelopmental disorders, but knowledge of molecular factors that govern sleep in young animals is lacking. Evidence across species, including Drosophila, suggests that juvenile sleep has distinct functions and regulatory mechanisms in comparison to sleep in maturity. In flies, manipulation of most known adult sleep regulatory genes is not associated with sleep phenotypes during early developmental (larval) stages. Here, we examine the role of the neurodevelopmental disorder-associated gene Neurofibromin 1 (Nf1) in sleep during numerous developmental periods. Mutations in Neurofibromin 1 (Nf1) are associated with sleep and circadian disorders in humans and adult flies. We find in flies that Nf1 acts to regulate sleep across the lifespan, beginning during larval stages. Nf1 is required in neurons for this function, as is signaling via the Alk pathway. These findings identify Nf1 as one of a small number of genes positioned to regulate sleep across developmental periods.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.