Na Li, Zemeng Feng, Yiyue He, Zhaogang Peng, Xiangrui Meng, Huijuan Lin, Kui Xu
{"title":"激活3.5nm超大孔的过滤能力,消除碳纳米管阵列膜对孔均匀性的要求","authors":"Na Li, Zemeng Feng, Yiyue He, Zhaogang Peng, Xiangrui Meng, Huijuan Lin, Kui Xu","doi":"10.1016/j.desal.2023.117090","DOIUrl":null,"url":null,"abstract":"<div><p>Vertical array carbon nanotube (VACNT) membrane is considered as one of the most promising materials for seawater desalination due to its excellent porosity, strong mechanical properties and atomic smoothness of the inner wall. However, in practical applications, the synthesis of highly oriented VACNT arrays with uniform pore sizes (< 1.1 nm) needs to be strictly controlled, and achieving high permeability-retention for large pores (> 1.1 nm) is a great challenge. Here, we use molecular dynamics simulations to introduce the oscillation paradigm into VACNT filtration membranes with a heterogeneous pore network with a wide pore size distribution (ranging from 1 nm to 3.5 nm). Notably, the oscillating heterogeneous VACNT membrane achieved ultra-high permeability of 1421.8 L/cm<sup>2</sup>/day/MPa (~5 times speed increase in comparison with homogeneous VACNT and ~ 2 times over state-of-the-art CNT membranes), while maintaining a selectivity of 97.5 %. This method activates the filtration capacity of 3.5 nm ultra-large pores, eliminating the requirement for pore homogeneity in VACNT, and achieves the effect of “killing two birds with one stone”. In addition, the filtration performance of specific heterogeneous VACNT membrane was successfully predicted by water permeability curve fitting, which provided valuable theoretical guidance for the design of high-performance VACNT reverse osmosis desalination system.</p></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"570 ","pages":"Article 117090"},"PeriodicalIF":8.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activate the filtration capability of 3.5 nm ultra-large pores and eliminate the requirement of pore homogeneity for carbon nanotube array membranes\",\"authors\":\"Na Li, Zemeng Feng, Yiyue He, Zhaogang Peng, Xiangrui Meng, Huijuan Lin, Kui Xu\",\"doi\":\"10.1016/j.desal.2023.117090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vertical array carbon nanotube (VACNT) membrane is considered as one of the most promising materials for seawater desalination due to its excellent porosity, strong mechanical properties and atomic smoothness of the inner wall. However, in practical applications, the synthesis of highly oriented VACNT arrays with uniform pore sizes (< 1.1 nm) needs to be strictly controlled, and achieving high permeability-retention for large pores (> 1.1 nm) is a great challenge. Here, we use molecular dynamics simulations to introduce the oscillation paradigm into VACNT filtration membranes with a heterogeneous pore network with a wide pore size distribution (ranging from 1 nm to 3.5 nm). Notably, the oscillating heterogeneous VACNT membrane achieved ultra-high permeability of 1421.8 L/cm<sup>2</sup>/day/MPa (~5 times speed increase in comparison with homogeneous VACNT and ~ 2 times over state-of-the-art CNT membranes), while maintaining a selectivity of 97.5 %. This method activates the filtration capacity of 3.5 nm ultra-large pores, eliminating the requirement for pore homogeneity in VACNT, and achieves the effect of “killing two birds with one stone”. In addition, the filtration performance of specific heterogeneous VACNT membrane was successfully predicted by water permeability curve fitting, which provided valuable theoretical guidance for the design of high-performance VACNT reverse osmosis desalination system.</p></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"570 \",\"pages\":\"Article 117090\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916423007221\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916423007221","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Activate the filtration capability of 3.5 nm ultra-large pores and eliminate the requirement of pore homogeneity for carbon nanotube array membranes
Vertical array carbon nanotube (VACNT) membrane is considered as one of the most promising materials for seawater desalination due to its excellent porosity, strong mechanical properties and atomic smoothness of the inner wall. However, in practical applications, the synthesis of highly oriented VACNT arrays with uniform pore sizes (< 1.1 nm) needs to be strictly controlled, and achieving high permeability-retention for large pores (> 1.1 nm) is a great challenge. Here, we use molecular dynamics simulations to introduce the oscillation paradigm into VACNT filtration membranes with a heterogeneous pore network with a wide pore size distribution (ranging from 1 nm to 3.5 nm). Notably, the oscillating heterogeneous VACNT membrane achieved ultra-high permeability of 1421.8 L/cm2/day/MPa (~5 times speed increase in comparison with homogeneous VACNT and ~ 2 times over state-of-the-art CNT membranes), while maintaining a selectivity of 97.5 %. This method activates the filtration capacity of 3.5 nm ultra-large pores, eliminating the requirement for pore homogeneity in VACNT, and achieves the effect of “killing two birds with one stone”. In addition, the filtration performance of specific heterogeneous VACNT membrane was successfully predicted by water permeability curve fitting, which provided valuable theoretical guidance for the design of high-performance VACNT reverse osmosis desalination system.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.