石墨烯材料在电化学储能中的应用研究

Deyi Zhang , Xiaodong Li , Wenjing Liu , Jingchi Gao , Xingru Yan , Qin Liu , Changshui Huang
{"title":"石墨烯材料在电化学储能中的应用研究","authors":"Deyi Zhang ,&nbsp;Xiaodong Li ,&nbsp;Wenjing Liu ,&nbsp;Jingchi Gao ,&nbsp;Xingru Yan ,&nbsp;Qin Liu ,&nbsp;Changshui Huang","doi":"10.1016/j.nwnano.2023.100017","DOIUrl":null,"url":null,"abstract":"<div><p>In recent decades, as the world has grappled with the twin challenges of environmental degradation and energy scarcity, the search for sustainable, efficient, and environmentally sound energy technologies has become more urgent than ever. Interest in carbon-based materials has surged in recent years because they are environmentally friendly, abundant, and chemically stable. As an emerging carbon allotrope, graphdiyne (GDY) is a promising candidate for next-generation energy devices due to its unique chemical structure, natural porosity (the pore diameter is 0.542 nm and the layer spacing is 0.365 nm), high conjugation, amazing charge mobility, excellent conductivity, and excellent stability. Here we reviewed the applications of GDY and its derivatives in electrochemical energy storage have been reviewed, including intrinsic GDY (GDY film, GDY with different aggregated morphologies, such as nanotubes, nanowires, and nanostrips), heteroatom doped GDY, GDY composite, and GDY derivates. The preparation strategies of those GDY-based materials and their performances applied in the electrochemical energy storage devices have been compared and discussed. GDY has been reported extensively to show great potential in various energy storage devices including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (KIBs), of which the theoretical capacities are up to 2553 (LIBs), 2006 (SIBs), 1600 (KIBs) mAh/g, respectively. This review covers the latest developments, challenges and prospects of GDY based materials for the applications of various energy storage fields. Hopefully, this paper can provide valuable insights for the research of GDY and related carbon materials in electrochemical energy storage and promote the application of carbon materials.</p></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"4 ","pages":"Article 100017"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of graphdiyne materials applied for electrochemical energy storage\",\"authors\":\"Deyi Zhang ,&nbsp;Xiaodong Li ,&nbsp;Wenjing Liu ,&nbsp;Jingchi Gao ,&nbsp;Xingru Yan ,&nbsp;Qin Liu ,&nbsp;Changshui Huang\",\"doi\":\"10.1016/j.nwnano.2023.100017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent decades, as the world has grappled with the twin challenges of environmental degradation and energy scarcity, the search for sustainable, efficient, and environmentally sound energy technologies has become more urgent than ever. Interest in carbon-based materials has surged in recent years because they are environmentally friendly, abundant, and chemically stable. As an emerging carbon allotrope, graphdiyne (GDY) is a promising candidate for next-generation energy devices due to its unique chemical structure, natural porosity (the pore diameter is 0.542 nm and the layer spacing is 0.365 nm), high conjugation, amazing charge mobility, excellent conductivity, and excellent stability. Here we reviewed the applications of GDY and its derivatives in electrochemical energy storage have been reviewed, including intrinsic GDY (GDY film, GDY with different aggregated morphologies, such as nanotubes, nanowires, and nanostrips), heteroatom doped GDY, GDY composite, and GDY derivates. The preparation strategies of those GDY-based materials and their performances applied in the electrochemical energy storage devices have been compared and discussed. GDY has been reported extensively to show great potential in various energy storage devices including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (KIBs), of which the theoretical capacities are up to 2553 (LIBs), 2006 (SIBs), 1600 (KIBs) mAh/g, respectively. This review covers the latest developments, challenges and prospects of GDY based materials for the applications of various energy storage fields. Hopefully, this paper can provide valuable insights for the research of GDY and related carbon materials in electrochemical energy storage and promote the application of carbon materials.</p></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"4 \",\"pages\":\"Article 100017\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978123000156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978123000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,随着世界应对环境退化和能源短缺的双重挑战,寻找可持续、高效和无害环境的能源技术变得比以往任何时候都更加紧迫。近年来,人们对碳基材料的兴趣激增,因为它们对环境友好、储量丰富且化学稳定。石墨烯(GDY)作为一种新兴的碳同素异形体,由于其独特的化学结构、天然的孔隙率(孔径为0.542nm,层间距为0.365nm)、高共轭性、惊人的电荷迁移率、优异的导电性和优异的稳定性,是下一代能源器件的候选材料。本文综述了GDY及其衍生物在电化学储能中的应用,包括本征GDY(GDY膜,具有不同聚集形态的GDY,如纳米管、纳米线和纳米片)、杂原子掺杂的GDY、GDY复合材料和GDY衍生物。对这些GDY基材料的制备策略及其在电化学储能器件中的应用性能进行了比较和讨论。GDY已被广泛报道在包括锂离子电池(LIBs)、钠离子电池(SIBs)和钾离子电池(KIBs)在内的各种储能装置中显示出巨大的潜力,其中理论容量分别高达2553(LIBs)、2006(SIBs)和1600(KIBs)mAh/g。本文综述了GDY基材料在各种储能领域的最新发展、挑战和前景。希望本文能为GDY及相关碳材料在电化学储能中的研究提供有价值的见解,促进碳材料的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research of graphdiyne materials applied for electrochemical energy storage

In recent decades, as the world has grappled with the twin challenges of environmental degradation and energy scarcity, the search for sustainable, efficient, and environmentally sound energy technologies has become more urgent than ever. Interest in carbon-based materials has surged in recent years because they are environmentally friendly, abundant, and chemically stable. As an emerging carbon allotrope, graphdiyne (GDY) is a promising candidate for next-generation energy devices due to its unique chemical structure, natural porosity (the pore diameter is 0.542 nm and the layer spacing is 0.365 nm), high conjugation, amazing charge mobility, excellent conductivity, and excellent stability. Here we reviewed the applications of GDY and its derivatives in electrochemical energy storage have been reviewed, including intrinsic GDY (GDY film, GDY with different aggregated morphologies, such as nanotubes, nanowires, and nanostrips), heteroatom doped GDY, GDY composite, and GDY derivates. The preparation strategies of those GDY-based materials and their performances applied in the electrochemical energy storage devices have been compared and discussed. GDY has been reported extensively to show great potential in various energy storage devices including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (KIBs), of which the theoretical capacities are up to 2553 (LIBs), 2006 (SIBs), 1600 (KIBs) mAh/g, respectively. This review covers the latest developments, challenges and prospects of GDY based materials for the applications of various energy storage fields. Hopefully, this paper can provide valuable insights for the research of GDY and related carbon materials in electrochemical energy storage and promote the application of carbon materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tailoring the shell structures in core-shell metal nanostructures for improved catalytic reduction of nitroaromatics Unraveling the laser decal transfer-based printing of ZnO ceramic towards FEP-ZnO-based Piezo-Tribo hybrid nanogenerators The surface charge effects: A route to the enhancement of the piezoelectric conversion efficiency in GaN nanowires Swift heavy ion irradiation puts InGaN/GaN multi-quantum wells on the track for efficient green light emission An analytical disquisition on the nonlinear optical responses of carbon quantum dots engineered by diverse synthesis methodologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1