{"title":"一步还是两步?空间二元probit模型的GMM效率评估","authors":"Gianfranco Piras , Mauricio Sarrias","doi":"10.1016/j.jocm.2023.100432","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we propose two-step generalized method of moment (GMM) procedure for a Spatial Binary Probit Model. In particular, we propose a series of two-step estimators based on different choices of the weighting matrix for the moments conditions in the first step, and different estimators for the variance–covariance matrix of the estimated coefficients. In the context of a Monte Carlo experiment, we compare the properties of these estimators, a linearized version of the one-step GMM and the recursive importance sampler (RIS). Our findings reveal that there are benefits related both to the choice of the weight matrix for the moment conditions and in adopting a two-step procedure.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"48 ","pages":"Article 100432"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One or two-step? Evaluating GMM efficiency for spatial binary probit models\",\"authors\":\"Gianfranco Piras , Mauricio Sarrias\",\"doi\":\"10.1016/j.jocm.2023.100432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we propose two-step generalized method of moment (GMM) procedure for a Spatial Binary Probit Model. In particular, we propose a series of two-step estimators based on different choices of the weighting matrix for the moments conditions in the first step, and different estimators for the variance–covariance matrix of the estimated coefficients. In the context of a Monte Carlo experiment, we compare the properties of these estimators, a linearized version of the one-step GMM and the recursive importance sampler (RIS). Our findings reveal that there are benefits related both to the choice of the weight matrix for the moment conditions and in adopting a two-step procedure.</p></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"48 \",\"pages\":\"Article 100432\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534523000337\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534523000337","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
One or two-step? Evaluating GMM efficiency for spatial binary probit models
In this article we propose two-step generalized method of moment (GMM) procedure for a Spatial Binary Probit Model. In particular, we propose a series of two-step estimators based on different choices of the weighting matrix for the moments conditions in the first step, and different estimators for the variance–covariance matrix of the estimated coefficients. In the context of a Monte Carlo experiment, we compare the properties of these estimators, a linearized version of the one-step GMM and the recursive importance sampler (RIS). Our findings reveal that there are benefits related both to the choice of the weight matrix for the moment conditions and in adopting a two-step procedure.