调查城市环境中的行人行为:Wi-Fi跟踪和机器学习方法

Avgousta Stanitsa, Stephen H Hallett, Simon Jude
{"title":"调查城市环境中的行人行为:Wi-Fi跟踪和机器学习方法","authors":"Avgousta Stanitsa,&nbsp;Stephen H Hallett,&nbsp;Simon Jude","doi":"10.1016/j.multra.2022.100049","DOIUrl":null,"url":null,"abstract":"<div><p>Urban geometry plays a critical role in determining paths for pedestrian flow in urban areas. To improve the urban planning processes and to enhance quality of life for end-users in urban spaces, a better understanding of the factors influencing pedestrian movement is required by decision-makers within the urban design and planning industry. The aim of this study is to present a novel means to assess pedestrian routing in urban environments. As a unique contribution to knowledge and practice, this study: (a) enhances the body of knowledge by developing a conceptual model to assess and classify pedestrian movement behaviours, utilising machine learning algorithms and location data in conjunction with spatial attributes, and (b) extends previous research by revealing spatial visibility as a driver for pedestrian movement in urban environments. The importance of the findings lies in the perspective of revealing novel insights concerning individual preferences and behaviours of end-users and the utilisation of urban spaces. The approaches developed can be utilised for observations in large-scale contexts, as an addition to traditional methods. Application of the model in a high pedestrian traffic-dense retail urban area in London reveals clear and consistent relationships amongst spatial visibility, individuals’ motivation, and knowledge of the area. Key behaviours established in the study area are grouped into two activity categories: (i) Utilitarian walking (with motivation - expert and novice striders) and (ii) Leisure walking (no motivation - expert and novice strollers). The approach offers an insightful and automated means to understand pedestrian flow in urban contexts and informs wider wayfinding, walkability, and transportation knowledge.</p></div>","PeriodicalId":100933,"journal":{"name":"Multimodal Transportation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Investigating pedestrian behaviour in urban environments: A Wi-Fi tracking and machine learning approach\",\"authors\":\"Avgousta Stanitsa,&nbsp;Stephen H Hallett,&nbsp;Simon Jude\",\"doi\":\"10.1016/j.multra.2022.100049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban geometry plays a critical role in determining paths for pedestrian flow in urban areas. To improve the urban planning processes and to enhance quality of life for end-users in urban spaces, a better understanding of the factors influencing pedestrian movement is required by decision-makers within the urban design and planning industry. The aim of this study is to present a novel means to assess pedestrian routing in urban environments. As a unique contribution to knowledge and practice, this study: (a) enhances the body of knowledge by developing a conceptual model to assess and classify pedestrian movement behaviours, utilising machine learning algorithms and location data in conjunction with spatial attributes, and (b) extends previous research by revealing spatial visibility as a driver for pedestrian movement in urban environments. The importance of the findings lies in the perspective of revealing novel insights concerning individual preferences and behaviours of end-users and the utilisation of urban spaces. The approaches developed can be utilised for observations in large-scale contexts, as an addition to traditional methods. Application of the model in a high pedestrian traffic-dense retail urban area in London reveals clear and consistent relationships amongst spatial visibility, individuals’ motivation, and knowledge of the area. Key behaviours established in the study area are grouped into two activity categories: (i) Utilitarian walking (with motivation - expert and novice striders) and (ii) Leisure walking (no motivation - expert and novice strollers). The approach offers an insightful and automated means to understand pedestrian flow in urban contexts and informs wider wayfinding, walkability, and transportation knowledge.</p></div>\",\"PeriodicalId\":100933,\"journal\":{\"name\":\"Multimodal Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772586322000491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772586322000491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

城市几何形状在确定城市地区行人流动路径方面发挥着关键作用。为了改进城市规划流程,提高城市空间最终用户的生活质量,城市设计和规划行业的决策者需要更好地了解影响行人流动的因素。本研究的目的是提出一种新的方法来评估城市环境中的行人路线。作为对知识和实践的独特贡献,本研究:(a)通过开发一个概念模型来评估和分类行人运动行为,利用机器学习算法和位置数据以及空间属性,增强知识体系,(b)通过揭示空间能见度作为城市环境中行人运动的驱动因素,扩展了先前的研究。研究结果的重要性在于揭示关于最终用户的个人偏好和行为以及城市空间利用的新见解。所开发的方法可用于大规模环境中的观测,作为传统方法的补充。该模型在伦敦一个行人流量高、零售密集的城市地区的应用揭示了空间可见性、个人动机和对该地区的了解之间清晰一致的关系。研究区域内确定的关键行为分为两类活动:(i)实用步行(有动机-专家和新手大步行走)和(ii)休闲步行(无动机-专家或新手推车行走)。该方法提供了一种深入而自动化的方法来理解城市环境中的行人流动,并为更广泛的寻路、步行性和交通知识提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating pedestrian behaviour in urban environments: A Wi-Fi tracking and machine learning approach

Urban geometry plays a critical role in determining paths for pedestrian flow in urban areas. To improve the urban planning processes and to enhance quality of life for end-users in urban spaces, a better understanding of the factors influencing pedestrian movement is required by decision-makers within the urban design and planning industry. The aim of this study is to present a novel means to assess pedestrian routing in urban environments. As a unique contribution to knowledge and practice, this study: (a) enhances the body of knowledge by developing a conceptual model to assess and classify pedestrian movement behaviours, utilising machine learning algorithms and location data in conjunction with spatial attributes, and (b) extends previous research by revealing spatial visibility as a driver for pedestrian movement in urban environments. The importance of the findings lies in the perspective of revealing novel insights concerning individual preferences and behaviours of end-users and the utilisation of urban spaces. The approaches developed can be utilised for observations in large-scale contexts, as an addition to traditional methods. Application of the model in a high pedestrian traffic-dense retail urban area in London reveals clear and consistent relationships amongst spatial visibility, individuals’ motivation, and knowledge of the area. Key behaviours established in the study area are grouped into two activity categories: (i) Utilitarian walking (with motivation - expert and novice striders) and (ii) Leisure walking (no motivation - expert and novice strollers). The approach offers an insightful and automated means to understand pedestrian flow in urban contexts and informs wider wayfinding, walkability, and transportation knowledge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
期刊最新文献
Relationship between urban traffic crashes and temporal/meteorological conditions: understanding and predicting the effects An assignment-based decomposition approach for the vehicle routing problem with backhauls An adapted savings algorithm for planning heterogeneous logistics with uncrewed aerial vehicles Catastrophic causes of truck drivers’ crashes on Brazilian highways: Mixed method analyses and crash prediction using machine learning Reinforcement learning in transportation research: Frontiers and future directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1