颠覆规模:为什么公用事业规模的太阳能避免了太阳能反弹,以及这对美国太阳能政策意味着什么

Q1 Social Sciences Electricity Journal Pub Date : 2023-05-01 DOI:10.1016/j.tej.2023.107266
Matthew E. Oliver
{"title":"颠覆规模:为什么公用事业规模的太阳能避免了太阳能反弹,以及这对美国太阳能政策意味着什么","authors":"Matthew E. Oliver","doi":"10.1016/j.tej.2023.107266","DOIUrl":null,"url":null,"abstract":"<div><p>Adoption of residential rooftop photovoltaic (PV) systems is increasingly widespread. However, empirical evidence shows that households who adopt rooftop PV increase total electricity consumption, a response known as the ‘solar rebound effect’ (SRE). The SRE implies that rooftop PV generation displaces conventional, grid-supplied electricity—still overwhelmingly generated by fossil fuel combustion—on a less than one-for-one basis. This article argues that utility-scale solar avoids a SRE because the SRE emerges as a household’s response to the <em>self-generation</em> of electricity by its rooftop PV system, which changes its electricity consumption incentives in ways that utility-scale solar does not. By avoiding a SRE, utility-scale solar allows the carbon reduction potential of increased PV generation capacity to be more fully realized, which has important implications for U.S. solar policy.</p></div>","PeriodicalId":35642,"journal":{"name":"Electricity Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tipping the scale: Why utility-scale solar avoids a solar rebound and what it means for U.S. solar policy\",\"authors\":\"Matthew E. Oliver\",\"doi\":\"10.1016/j.tej.2023.107266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adoption of residential rooftop photovoltaic (PV) systems is increasingly widespread. However, empirical evidence shows that households who adopt rooftop PV increase total electricity consumption, a response known as the ‘solar rebound effect’ (SRE). The SRE implies that rooftop PV generation displaces conventional, grid-supplied electricity—still overwhelmingly generated by fossil fuel combustion—on a less than one-for-one basis. This article argues that utility-scale solar avoids a SRE because the SRE emerges as a household’s response to the <em>self-generation</em> of electricity by its rooftop PV system, which changes its electricity consumption incentives in ways that utility-scale solar does not. By avoiding a SRE, utility-scale solar allows the carbon reduction potential of increased PV generation capacity to be more fully realized, which has important implications for U.S. solar policy.</p></div>\",\"PeriodicalId\":35642,\"journal\":{\"name\":\"Electricity Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electricity Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1040619023000337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electricity Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040619023000337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

住宅屋顶光伏(PV)系统的采用越来越广泛。然而,经验证据表明,采用屋顶光伏发电的家庭会增加总用电量,这种反应被称为“太阳能反弹效应”(SRE)。SRE意味着,屋顶光伏发电取代了传统的电网供电——仍然绝大多数是由化石燃料燃烧产生的——在不到一比一的基础上。本文认为,公用事业规模的太阳能避免了SRE,因为SRE是一个家庭对其屋顶光伏系统自行发电的反应,这改变了其电力消耗激励,而公用事业规模太阳能则没有。通过避免SRE,公用事业规模的太阳能可以更充分地实现增加光伏发电能力的碳减排潜力,这对美国太阳能政策具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tipping the scale: Why utility-scale solar avoids a solar rebound and what it means for U.S. solar policy

Adoption of residential rooftop photovoltaic (PV) systems is increasingly widespread. However, empirical evidence shows that households who adopt rooftop PV increase total electricity consumption, a response known as the ‘solar rebound effect’ (SRE). The SRE implies that rooftop PV generation displaces conventional, grid-supplied electricity—still overwhelmingly generated by fossil fuel combustion—on a less than one-for-one basis. This article argues that utility-scale solar avoids a SRE because the SRE emerges as a household’s response to the self-generation of electricity by its rooftop PV system, which changes its electricity consumption incentives in ways that utility-scale solar does not. By avoiding a SRE, utility-scale solar allows the carbon reduction potential of increased PV generation capacity to be more fully realized, which has important implications for U.S. solar policy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electricity Journal
Electricity Journal Business, Management and Accounting-Business and International Management
CiteScore
5.80
自引率
0.00%
发文量
95
审稿时长
31 days
期刊介绍: The Electricity Journal is the leading journal in electric power policy. The journal deals primarily with fuel diversity and the energy mix needed for optimal energy market performance, and therefore covers the full spectrum of energy, from coal, nuclear, natural gas and oil, to renewable energy sources including hydro, solar, geothermal and wind power. Recently, the journal has been publishing in emerging areas including energy storage, microgrid strategies, dynamic pricing, cyber security, climate change, cap and trade, distributed generation, net metering, transmission and generation market dynamics. The Electricity Journal aims to bring together the most thoughtful and influential thinkers globally from across industry, practitioners, government, policymakers and academia. The Editorial Advisory Board is comprised of electric industry thought leaders who have served as regulators, consultants, litigators, and market advocates. Their collective experience helps ensure that the most relevant and thought-provoking issues are presented to our readers, and helps navigate the emerging shape and design of the electricity/energy industry.
期刊最新文献
Critical infrastructure organisational resilience assessment: A case study of Malawi’s power grid operator The role of political parties in the public perception of nuclear energy The political economy of electricity market coupling: Comparing experiences from Europe and the United States Residential electricity efficiency and implications for Vietnam's clean energy transition With uncertainty comes opportunity: Repurposing coal assets to create new beginnings in the U.S.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1