Ummul Afia Shammi , Zhijian Luan , Jia Xu , Aws Hamid , Lucia Flors , Joanne Cassani , Talissa A. Altes , Robert P. Thomen , Steven R. Van Doren
{"title":"利用主成分分析改进了呼吸期心脏磁共振自由运行的可视化","authors":"Ummul Afia Shammi , Zhijian Luan , Jia Xu , Aws Hamid , Lucia Flors , Joanne Cassani , Talissa A. Altes , Robert P. Thomen , Steven R. Van Doren","doi":"10.1016/j.redii.2023.100035","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale and objectives</h3><p>To support cardiac MR acquisitions during breathing without ECG, we developed software to mitigate the effects of respiratory displacement of the heart. The algorithm resolves respiratory motions and cardiac cycles from DICOM files. The new software automatically detects heartbeats from expiration and inspiration to decrease apparent respiratory motion.</p></div><div><h3>Materials and methods</h3><p>Our software uses principal component analysis to resolve respiratory motions from cardiac cycles. It groups heartbeats from expiration and inspiration to decrease apparent respiratory motion. The respiratory motion correction was evaluated on short-axis views (acquired with compressed sensing) of 11 healthy subjects and 8 cardiac patients. Two expert radiologists, blinded to the processing, assessed the dynamic images in terms of blood-myocardial contrast, endocardial interface definition, and motion artifacts.</p></div><div><h3>Results</h3><p>The smallest correlation coefficients between end-systolic frames of the original dynamic scans averaged 0.79. After segregation of cardiac cycles by respiratory phase, the mean correlation coefficients between cardiac cycles were 0.94±0.03 at end-expiration and 0.90±0.08 at end-inspiration. The improvements in correlation coefficients were significant in paired t-tests for healthy subjects and heart patients at end-expiration. Clinical assessment preferred cardiac cycles during end-expiration, which maintained or enhanced scores in 90% of healthy subjects and 83% of the heart patients. Performance remained high with arrhythmia and irregular breathing present.</p></div><div><h3>Conclusion</h3><p>Heartbeats collected from end-expiration mitigate respiratory motion and are accessible by applying the new software to DICOM files from real-time CMR. Inspiratory heartbeats are also accessible for examination of arrhythmias or abnormalities at end-inspiration.</p></div>","PeriodicalId":74676,"journal":{"name":"Research in diagnostic and interventional imaging","volume":"8 ","pages":"Article 100035"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved visualization of free-running cardiac magnetic resonance by respiratory phase using principal component analysis\",\"authors\":\"Ummul Afia Shammi , Zhijian Luan , Jia Xu , Aws Hamid , Lucia Flors , Joanne Cassani , Talissa A. Altes , Robert P. Thomen , Steven R. Van Doren\",\"doi\":\"10.1016/j.redii.2023.100035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Rationale and objectives</h3><p>To support cardiac MR acquisitions during breathing without ECG, we developed software to mitigate the effects of respiratory displacement of the heart. The algorithm resolves respiratory motions and cardiac cycles from DICOM files. The new software automatically detects heartbeats from expiration and inspiration to decrease apparent respiratory motion.</p></div><div><h3>Materials and methods</h3><p>Our software uses principal component analysis to resolve respiratory motions from cardiac cycles. It groups heartbeats from expiration and inspiration to decrease apparent respiratory motion. The respiratory motion correction was evaluated on short-axis views (acquired with compressed sensing) of 11 healthy subjects and 8 cardiac patients. Two expert radiologists, blinded to the processing, assessed the dynamic images in terms of blood-myocardial contrast, endocardial interface definition, and motion artifacts.</p></div><div><h3>Results</h3><p>The smallest correlation coefficients between end-systolic frames of the original dynamic scans averaged 0.79. After segregation of cardiac cycles by respiratory phase, the mean correlation coefficients between cardiac cycles were 0.94±0.03 at end-expiration and 0.90±0.08 at end-inspiration. The improvements in correlation coefficients were significant in paired t-tests for healthy subjects and heart patients at end-expiration. Clinical assessment preferred cardiac cycles during end-expiration, which maintained or enhanced scores in 90% of healthy subjects and 83% of the heart patients. Performance remained high with arrhythmia and irregular breathing present.</p></div><div><h3>Conclusion</h3><p>Heartbeats collected from end-expiration mitigate respiratory motion and are accessible by applying the new software to DICOM files from real-time CMR. Inspiratory heartbeats are also accessible for examination of arrhythmias or abnormalities at end-inspiration.</p></div>\",\"PeriodicalId\":74676,\"journal\":{\"name\":\"Research in diagnostic and interventional imaging\",\"volume\":\"8 \",\"pages\":\"Article 100035\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in diagnostic and interventional imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772652523000145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in diagnostic and interventional imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772652523000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved visualization of free-running cardiac magnetic resonance by respiratory phase using principal component analysis
Rationale and objectives
To support cardiac MR acquisitions during breathing without ECG, we developed software to mitigate the effects of respiratory displacement of the heart. The algorithm resolves respiratory motions and cardiac cycles from DICOM files. The new software automatically detects heartbeats from expiration and inspiration to decrease apparent respiratory motion.
Materials and methods
Our software uses principal component analysis to resolve respiratory motions from cardiac cycles. It groups heartbeats from expiration and inspiration to decrease apparent respiratory motion. The respiratory motion correction was evaluated on short-axis views (acquired with compressed sensing) of 11 healthy subjects and 8 cardiac patients. Two expert radiologists, blinded to the processing, assessed the dynamic images in terms of blood-myocardial contrast, endocardial interface definition, and motion artifacts.
Results
The smallest correlation coefficients between end-systolic frames of the original dynamic scans averaged 0.79. After segregation of cardiac cycles by respiratory phase, the mean correlation coefficients between cardiac cycles were 0.94±0.03 at end-expiration and 0.90±0.08 at end-inspiration. The improvements in correlation coefficients were significant in paired t-tests for healthy subjects and heart patients at end-expiration. Clinical assessment preferred cardiac cycles during end-expiration, which maintained or enhanced scores in 90% of healthy subjects and 83% of the heart patients. Performance remained high with arrhythmia and irregular breathing present.
Conclusion
Heartbeats collected from end-expiration mitigate respiratory motion and are accessible by applying the new software to DICOM files from real-time CMR. Inspiratory heartbeats are also accessible for examination of arrhythmias or abnormalities at end-inspiration.