与太阳一起设计:在建筑一体化光伏建筑中寻求美学和能源性能之间的平衡

C. Zomer , M. Fossati , A. Machado
{"title":"与太阳一起设计:在建筑一体化光伏建筑中寻求美学和能源性能之间的平衡","authors":"C. Zomer ,&nbsp;M. Fossati ,&nbsp;A. Machado","doi":"10.1016/j.solcom.2023.100046","DOIUrl":null,"url":null,"abstract":"<div><p>Energy generation in buildings is a reality in several countries. But to obtain the best aesthetics and energetic performance from the photovoltaics (PV) architectural integration, it is necessary to make essential decisions in the design stage. This paper aims to demonstrate how decision-making in the design phase of the PV design can take advantage of two tools that allow the designer to evaluate the use of solar irradiation and the impact of shading in different conditions of orientation and inclination: the solar abacus and the shading masks. The method introduced each tool and explained how they could be used to support and guide the definition of architectural design. Additionally, the critical decision-making points for each tool were highlighted, enabling better comprehension for decision-making. The method was applied in two case studies in the same residential building located in the South of Brazil: one PV system for a rooftop and another PV system for a solar carport. As a result of the application of this method, although the orientations and inclinations existing in the case study were not ideally oriented, it was still possible to respect them, creating a building-integrated photovoltaic system (BIPV) design that harmonized with the building and valued the integration of the PV in the architecture. Due to the simplicity of interpretation of the adopted tools, both architects not specialized in solar energy and end customers can understand the decision-making process and the resulting losses from each project choice.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"6 ","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Designing with the Sun: Finding balance between aesthetics and energy performance in Building-integrated photovoltaic buildings\",\"authors\":\"C. Zomer ,&nbsp;M. Fossati ,&nbsp;A. Machado\",\"doi\":\"10.1016/j.solcom.2023.100046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy generation in buildings is a reality in several countries. But to obtain the best aesthetics and energetic performance from the photovoltaics (PV) architectural integration, it is necessary to make essential decisions in the design stage. This paper aims to demonstrate how decision-making in the design phase of the PV design can take advantage of two tools that allow the designer to evaluate the use of solar irradiation and the impact of shading in different conditions of orientation and inclination: the solar abacus and the shading masks. The method introduced each tool and explained how they could be used to support and guide the definition of architectural design. Additionally, the critical decision-making points for each tool were highlighted, enabling better comprehension for decision-making. The method was applied in two case studies in the same residential building located in the South of Brazil: one PV system for a rooftop and another PV system for a solar carport. As a result of the application of this method, although the orientations and inclinations existing in the case study were not ideally oriented, it was still possible to respect them, creating a building-integrated photovoltaic system (BIPV) design that harmonized with the building and valued the integration of the PV in the architecture. Due to the simplicity of interpretation of the adopted tools, both architects not specialized in solar energy and end customers can understand the decision-making process and the resulting losses from each project choice.</p></div>\",\"PeriodicalId\":101173,\"journal\":{\"name\":\"Solar Compass\",\"volume\":\"6 \",\"pages\":\"Article 100046\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Compass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772940023000140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940023000140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在一些国家,建筑中的能源发电是一种现实。但是,要想从光伏建筑集成中获得最佳的美学和能量性能,就必须在设计阶段做出必要的决策。本文旨在展示光伏设计设计阶段的决策如何利用两种工具,使设计师能够评估太阳能辐射的使用以及在不同方向和倾斜条件下遮阳的影响:太阳能算盘和遮阳面罩。该方法介绍了每种工具,并解释了如何使用它们来支持和指导建筑设计的定义。此外,还强调了每种工具的关键决策点,以便更好地理解决策。该方法应用于巴西南部同一栋住宅楼的两个案例研究:一个用于屋顶的光伏系统和另一个用于太阳能车库的光伏系统。由于该方法的应用,尽管案例研究中存在的方向和倾斜度不是理想的方向,但仍然可以尊重它们,创建一个与建筑协调的建筑集成光伏系统(BIPV)设计,并重视光伏在建筑中的集成。由于所采用的工具解释简单,非太阳能专业的建筑师和最终客户都可以了解决策过程以及每个项目选择所带来的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing with the Sun: Finding balance between aesthetics and energy performance in Building-integrated photovoltaic buildings

Energy generation in buildings is a reality in several countries. But to obtain the best aesthetics and energetic performance from the photovoltaics (PV) architectural integration, it is necessary to make essential decisions in the design stage. This paper aims to demonstrate how decision-making in the design phase of the PV design can take advantage of two tools that allow the designer to evaluate the use of solar irradiation and the impact of shading in different conditions of orientation and inclination: the solar abacus and the shading masks. The method introduced each tool and explained how they could be used to support and guide the definition of architectural design. Additionally, the critical decision-making points for each tool were highlighted, enabling better comprehension for decision-making. The method was applied in two case studies in the same residential building located in the South of Brazil: one PV system for a rooftop and another PV system for a solar carport. As a result of the application of this method, although the orientations and inclinations existing in the case study were not ideally oriented, it was still possible to respect them, creating a building-integrated photovoltaic system (BIPV) design that harmonized with the building and valued the integration of the PV in the architecture. Due to the simplicity of interpretation of the adopted tools, both architects not specialized in solar energy and end customers can understand the decision-making process and the resulting losses from each project choice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation studies and experimental validation on solar multi - effect desalination system Experimental analysis on a solar photovoltaic indoor cooker integrated with an energy storage system: A positive step towards clean cooking transition for Sub-Saharan Africa Comparative analysis of bifacial and monofacial FPV system in the UK Improving optical efficiency of linear Fresnel collectors in the Sahel via position and length adjustment Integral ecology approach to life cycle assessment of solar arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1