雾计算环境下基于蜘蛛猴优化的资源分配与调度

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-09-01 DOI:10.1016/j.hcc.2023.100149
Shahid Sultan Hajam, Shabir Ahmad Sofi
{"title":"雾计算环境下基于蜘蛛猴优化的资源分配与调度","authors":"Shahid Sultan Hajam,&nbsp;Shabir Ahmad Sofi","doi":"10.1016/j.hcc.2023.100149","DOIUrl":null,"url":null,"abstract":"<div><p>Spider monkey optimization (SMO) is a quite popular and recent swarm intelligence algorithm for numerical optimization. SMO is Fission-Fusion social structure based algorithm inspired by spider monkey’s behavior. The algorithm proves to be very efficient in solving various constrained and unconstrained optimization problems. This paper presents the application of SMO in fog computing. We propose a heuristic initialization based spider monkey optimization algorithm for resource allocation and scheduling in a fog computing network. The algorithm minimizes the total cost (service time and monetary cost) of tasks by choosing the optimal fog nodes. Longest job fastest processor (LJFP), shortest job fastest processor (SJFP), and minimum completion time (MCT) based initialization of SMO are proposed and compared with each other. The performance is compared based on the parameters of average cost, average service time, average monetary cost, and the average cost per schedule. The results demonstrate the efficacy of MCT-SMO as compared to other heuristic initialization based SMO algorithms and Particle Swarm Optimization (PSO).</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"3 3","pages":"Article 100149"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spider monkey optimization based resource allocation and scheduling in fog computing environment\",\"authors\":\"Shahid Sultan Hajam,&nbsp;Shabir Ahmad Sofi\",\"doi\":\"10.1016/j.hcc.2023.100149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spider monkey optimization (SMO) is a quite popular and recent swarm intelligence algorithm for numerical optimization. SMO is Fission-Fusion social structure based algorithm inspired by spider monkey’s behavior. The algorithm proves to be very efficient in solving various constrained and unconstrained optimization problems. This paper presents the application of SMO in fog computing. We propose a heuristic initialization based spider monkey optimization algorithm for resource allocation and scheduling in a fog computing network. The algorithm minimizes the total cost (service time and monetary cost) of tasks by choosing the optimal fog nodes. Longest job fastest processor (LJFP), shortest job fastest processor (SJFP), and minimum completion time (MCT) based initialization of SMO are proposed and compared with each other. The performance is compared based on the parameters of average cost, average service time, average monetary cost, and the average cost per schedule. The results demonstrate the efficacy of MCT-SMO as compared to other heuristic initialization based SMO algorithms and Particle Swarm Optimization (PSO).</p></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"3 3\",\"pages\":\"Article 100149\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295223000478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

蜘蛛猴优化算法(SMO)是近年来流行的一种用于数值优化的群体智能算法。SMO是一种受蜘蛛猴行为启发的基于裂变融合社会结构的算法。该算法在求解各种有约束和无约束的优化问题时被证明是非常有效的。本文介绍了SMO在雾计算中的应用。我们提出了一种基于启发式初始化的蜘蛛猴优化算法,用于雾计算网络中的资源分配和调度。该算法通过选择最优雾节点来最小化任务的总成本(服务时间和货币成本)。提出了基于最长作业最快处理器(LJFP)、最短作业最快处理程序(SJFP)和最小完成时间(MCT)的SMO初始化方法,并进行了比较。基于平均成本、平均服务时间、平均货币成本和每个时间表的平均成本的参数来比较性能。与其他基于启发式初始化的SMO算法和粒子群优化算法(PSO)相比,结果证明了MCT-SMO的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spider monkey optimization based resource allocation and scheduling in fog computing environment

Spider monkey optimization (SMO) is a quite popular and recent swarm intelligence algorithm for numerical optimization. SMO is Fission-Fusion social structure based algorithm inspired by spider monkey’s behavior. The algorithm proves to be very efficient in solving various constrained and unconstrained optimization problems. This paper presents the application of SMO in fog computing. We propose a heuristic initialization based spider monkey optimization algorithm for resource allocation and scheduling in a fog computing network. The algorithm minimizes the total cost (service time and monetary cost) of tasks by choosing the optimal fog nodes. Longest job fastest processor (LJFP), shortest job fastest processor (SJFP), and minimum completion time (MCT) based initialization of SMO are proposed and compared with each other. The performance is compared based on the parameters of average cost, average service time, average monetary cost, and the average cost per schedule. The results demonstrate the efficacy of MCT-SMO as compared to other heuristic initialization based SMO algorithms and Particle Swarm Optimization (PSO).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] On Building Automation System security SoK: Decentralized Storage Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1