{"title":"的随机部分ℓp-椭球、最优恢复和对角算子的Gelfand数","authors":"Aicke Hinrichs , Joscha Prochno , Mathias Sonnleitner","doi":"10.1016/j.jat.2023.105919","DOIUrl":null,"url":null,"abstract":"<div><p>We study the circumradius of a random section of an <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-ellipsoid, <span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>, and compare it with the minimal circumradius over all sections with subspaces of the same codimension. Our main result is an upper bound for random sections, which we prove using techniques from asymptotic geometric analysis if <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></mrow></math></span> and compressed sensing if <span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. This can be interpreted as a bound on the quality of random (Gaussian) information for the recovery of vectors from an <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-ellipsoid for which the radius of optimal information is given by the Gelfand numbers of a diagonal operator. In the case where the semiaxes decay polynomially and <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>, we conjecture that, as the amount of information increases, the radius of random information either decays like the radius of optimal information or is bounded from below by a constant, depending on whether the exponent of decay is larger than the critical value <span><math><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></math></span> or not. If <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mn>2</mn></mrow></math></span>, we prove this conjecture by providing a matching lower bound. This extends the recent work of Hinrichs et al. [Random sections of ellipsoids and the power of random information, Trans. Amer. Math. Soc., 2021] for the case <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Random sections of ℓp-ellipsoids, optimal recovery and Gelfand numbers of diagonal operators\",\"authors\":\"Aicke Hinrichs , Joscha Prochno , Mathias Sonnleitner\",\"doi\":\"10.1016/j.jat.2023.105919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the circumradius of a random section of an <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-ellipsoid, <span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>, and compare it with the minimal circumradius over all sections with subspaces of the same codimension. Our main result is an upper bound for random sections, which we prove using techniques from asymptotic geometric analysis if <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></mrow></math></span> and compressed sensing if <span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. This can be interpreted as a bound on the quality of random (Gaussian) information for the recovery of vectors from an <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-ellipsoid for which the radius of optimal information is given by the Gelfand numbers of a diagonal operator. In the case where the semiaxes decay polynomially and <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>, we conjecture that, as the amount of information increases, the radius of random information either decays like the radius of optimal information or is bounded from below by a constant, depending on whether the exponent of decay is larger than the critical value <span><math><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></math></span> or not. If <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mn>2</mn></mrow></math></span>, we prove this conjecture by providing a matching lower bound. This extends the recent work of Hinrichs et al. [Random sections of ellipsoids and the power of random information, Trans. Amer. Math. Soc., 2021] for the case <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904523000576\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523000576","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Random sections of ℓp-ellipsoids, optimal recovery and Gelfand numbers of diagonal operators
We study the circumradius of a random section of an -ellipsoid, , and compare it with the minimal circumradius over all sections with subspaces of the same codimension. Our main result is an upper bound for random sections, which we prove using techniques from asymptotic geometric analysis if and compressed sensing if . This can be interpreted as a bound on the quality of random (Gaussian) information for the recovery of vectors from an -ellipsoid for which the radius of optimal information is given by the Gelfand numbers of a diagonal operator. In the case where the semiaxes decay polynomially and , we conjecture that, as the amount of information increases, the radius of random information either decays like the radius of optimal information or is bounded from below by a constant, depending on whether the exponent of decay is larger than the critical value or not. If , we prove this conjecture by providing a matching lower bound. This extends the recent work of Hinrichs et al. [Random sections of ellipsoids and the power of random information, Trans. Amer. Math. Soc., 2021] for the case .
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.