利用氨盐化学吸附反应的概念验证吸收热泵的设计和制造

G.H. Atkinson , S.J. Metcalf , R.E. Critoph , G.S.F. Shire , M. van der Pal
{"title":"利用氨盐化学吸附反应的概念验证吸收热泵的设计和制造","authors":"G.H. Atkinson ,&nbsp;S.J. Metcalf ,&nbsp;R.E. Critoph ,&nbsp;G.S.F. Shire ,&nbsp;M. van der Pal","doi":"10.1016/j.cles.2023.100082","DOIUrl":null,"url":null,"abstract":"<div><p>Using the Large Temperature Jump (LTJ) experimental technique, alongside a review of the literature, sodium bromide (NaBr) and manganese chloride (MnCl<sub>2</sub>) have been identified as a suitable working pair with ammonia refrigerant for a proof-of-concept resorption heat pump system. LTJ tests using a tube-side and shell-side unit cell reactor (sorption heat exchanger), show that the experimentally obtained equilibrium lines for adsorption and desorption of sodium bromide are: Δ<em>H</em><sub>ADS</sub> = 30,102.5 J/mol; ΔS<sub>ADS</sub> = 207.7 J/(mol·K); Δ<em>H</em><sub>DES</sub> = 30,216.4 J/mol; and Δ<em>S</em><sub>DES</sub> = 206.8 J/(mol·K). Using a semi-empirical model, the NaBr composite salt (salt impregnated in expanded natural graphite (ENG)) has been characterised for use as a low temperature salt in a resorption heat pump, with manganese chloride as the high-temperature salt. The model constants, <em>A</em> and <em>n</em>, for adsorption are 1 and 3, and for desorption are 5 and 4 respectively for NaBr. Manganese chloride data has been previously reported (<span>Hinmers et al., 2022</span>). With an appreciation of the reaction dynamics and behaviour of the NaBr and MnCl<sub>2</sub> composite salts, a proof-of-concept resorption system has been designed and manufactured. The reactor design, alongside the overall experimental rig design (including data acquisition system) is reported. Initial filling and flushing tests show the success of the data acquisition and control system, and thus the overall suitability of the proof of-concept system for investigations into the coupled nature of ammonia salt reactions for a resorption heat pump application.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and manufacture of a proof-of-concept resorption heat pump using ammonia-salt chemisorption reactions\",\"authors\":\"G.H. Atkinson ,&nbsp;S.J. Metcalf ,&nbsp;R.E. Critoph ,&nbsp;G.S.F. Shire ,&nbsp;M. van der Pal\",\"doi\":\"10.1016/j.cles.2023.100082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the Large Temperature Jump (LTJ) experimental technique, alongside a review of the literature, sodium bromide (NaBr) and manganese chloride (MnCl<sub>2</sub>) have been identified as a suitable working pair with ammonia refrigerant for a proof-of-concept resorption heat pump system. LTJ tests using a tube-side and shell-side unit cell reactor (sorption heat exchanger), show that the experimentally obtained equilibrium lines for adsorption and desorption of sodium bromide are: Δ<em>H</em><sub>ADS</sub> = 30,102.5 J/mol; ΔS<sub>ADS</sub> = 207.7 J/(mol·K); Δ<em>H</em><sub>DES</sub> = 30,216.4 J/mol; and Δ<em>S</em><sub>DES</sub> = 206.8 J/(mol·K). Using a semi-empirical model, the NaBr composite salt (salt impregnated in expanded natural graphite (ENG)) has been characterised for use as a low temperature salt in a resorption heat pump, with manganese chloride as the high-temperature salt. The model constants, <em>A</em> and <em>n</em>, for adsorption are 1 and 3, and for desorption are 5 and 4 respectively for NaBr. Manganese chloride data has been previously reported (<span>Hinmers et al., 2022</span>). With an appreciation of the reaction dynamics and behaviour of the NaBr and MnCl<sub>2</sub> composite salts, a proof-of-concept resorption system has been designed and manufactured. The reactor design, alongside the overall experimental rig design (including data acquisition system) is reported. Initial filling and flushing tests show the success of the data acquisition and control system, and thus the overall suitability of the proof of-concept system for investigations into the coupled nature of ammonia salt reactions for a resorption heat pump application.</p></div>\",\"PeriodicalId\":100252,\"journal\":{\"name\":\"Cleaner Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772783123000328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783123000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用大温差(LTJ)实验技术,结合文献综述,溴化钠(NaBr)和氯化锰(MnCl2)已被确定为与氨制冷剂配合使用的合适的工作对,用于概念验证吸收热泵系统。使用管侧和壳侧单元电池反应器(吸附热交换器)进行的LTJ试验表明,实验获得的溴化钠吸附和解吸的平衡线为:ΔHADS=30102.5J/mol;ΔSADS-207.7J/(mol·K);ΔHDES=30216.4J/mol;ΔSDES=206.8J/(mol·K)。使用半经验模型,以氯化锰为高温盐,对NaBr复合盐(浸渍在膨胀天然石墨(ENG)中的盐)在吸收热泵中用作低温盐进行了表征。对于NaBr,吸附的模型常数A和n分别为1和3,解吸的模型常数分别为5和4。氯化锰数据先前已有报道(Hinmers等人,2022)。为了了解NaBr和MnCl2复合盐的反应动力学和行为,设计并制造了一个概念验证吸收系统。报告了反应堆的设计,以及整个实验装置的设计(包括数据采集系统)。初步填充和冲洗试验表明,数据采集和控制系统取得了成功,因此,概念验证系统在研究吸收热泵应用中氨盐反应的耦合性质方面具有整体适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and manufacture of a proof-of-concept resorption heat pump using ammonia-salt chemisorption reactions

Using the Large Temperature Jump (LTJ) experimental technique, alongside a review of the literature, sodium bromide (NaBr) and manganese chloride (MnCl2) have been identified as a suitable working pair with ammonia refrigerant for a proof-of-concept resorption heat pump system. LTJ tests using a tube-side and shell-side unit cell reactor (sorption heat exchanger), show that the experimentally obtained equilibrium lines for adsorption and desorption of sodium bromide are: ΔHADS = 30,102.5 J/mol; ΔSADS = 207.7 J/(mol·K); ΔHDES = 30,216.4 J/mol; and ΔSDES = 206.8 J/(mol·K). Using a semi-empirical model, the NaBr composite salt (salt impregnated in expanded natural graphite (ENG)) has been characterised for use as a low temperature salt in a resorption heat pump, with manganese chloride as the high-temperature salt. The model constants, A and n, for adsorption are 1 and 3, and for desorption are 5 and 4 respectively for NaBr. Manganese chloride data has been previously reported (Hinmers et al., 2022). With an appreciation of the reaction dynamics and behaviour of the NaBr and MnCl2 composite salts, a proof-of-concept resorption system has been designed and manufactured. The reactor design, alongside the overall experimental rig design (including data acquisition system) is reported. Initial filling and flushing tests show the success of the data acquisition and control system, and thus the overall suitability of the proof of-concept system for investigations into the coupled nature of ammonia salt reactions for a resorption heat pump application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Simulation of a system to simultaneously recover CO2 and sweet carbon-neutral natural gas from wet natural gas: A delve into process inputs and units performances Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics Techno economic study of floating solar photovoltaic project in Indonesia using RETscreen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1