表皮对致密化麻竹弯曲性能和导热性能的影响

A.D. de Sá , M. Kadivar , G.H.A. Barbirato , A. Tarverdi , S. Kadivar , L.M. do Amaral , H. Savastano Júnior
{"title":"表皮对致密化麻竹弯曲性能和导热性能的影响","authors":"A.D. de Sá ,&nbsp;M. Kadivar ,&nbsp;G.H.A. Barbirato ,&nbsp;A. Tarverdi ,&nbsp;S. Kadivar ,&nbsp;L.M. do Amaral ,&nbsp;H. Savastano Júnior","doi":"10.1016/j.bamboo.2023.100041","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the effect of densification and the maintenance of the outer skin on the flexural properties and thermal conductivity of <em>Dendrocalamus asper</em> Backer ex K.Heyne bamboo was investigated. The results showed improvements in bending resistance for the densified samples compared to the un-densified bamboo. Densified samples with the outer skin showed the highest bending strength. Samples with the outer culm wall in compression offered the best results, with an average modulus of rupture (MOR) of around 348.9 MPa and modulus of elasticity (MOE) of 28.4 GPa. These values are around 40% and 86% (MOR), and 17% and 30% (MOE) higher compared to densified samples without the skin and un-densified samples, respectively. The fracture sections of specimens after bending tests were analyzed using Scanning Electron Microscopy (SEM) to visualize crack propagation within the outer skin and bamboo tissues. Maintaining the skin increases the thermal conductivity, and the densified bamboo with the skin has a thermal conductivity of around 0.23 W/m.K, 12.8% higher than the densified bamboo without skin and 22.5% higher than un-densified bamboo. Although a reduction in thermal performance was achieved, it was concluded that is reasonable to keep the bamboo skin, as it improves the overall mechanical resistance and reduces material loss during bamboo processing.</p></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":"5 ","pages":"Article 100041"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the outer skin on the flexural properties and thermal conductivity of densified Dendrocalamus asper bamboo\",\"authors\":\"A.D. de Sá ,&nbsp;M. Kadivar ,&nbsp;G.H.A. Barbirato ,&nbsp;A. Tarverdi ,&nbsp;S. Kadivar ,&nbsp;L.M. do Amaral ,&nbsp;H. Savastano Júnior\",\"doi\":\"10.1016/j.bamboo.2023.100041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the effect of densification and the maintenance of the outer skin on the flexural properties and thermal conductivity of <em>Dendrocalamus asper</em> Backer ex K.Heyne bamboo was investigated. The results showed improvements in bending resistance for the densified samples compared to the un-densified bamboo. Densified samples with the outer skin showed the highest bending strength. Samples with the outer culm wall in compression offered the best results, with an average modulus of rupture (MOR) of around 348.9 MPa and modulus of elasticity (MOE) of 28.4 GPa. These values are around 40% and 86% (MOR), and 17% and 30% (MOE) higher compared to densified samples without the skin and un-densified samples, respectively. The fracture sections of specimens after bending tests were analyzed using Scanning Electron Microscopy (SEM) to visualize crack propagation within the outer skin and bamboo tissues. Maintaining the skin increases the thermal conductivity, and the densified bamboo with the skin has a thermal conductivity of around 0.23 W/m.K, 12.8% higher than the densified bamboo without skin and 22.5% higher than un-densified bamboo. Although a reduction in thermal performance was achieved, it was concluded that is reasonable to keep the bamboo skin, as it improves the overall mechanical resistance and reduces material loss during bamboo processing.</p></div>\",\"PeriodicalId\":100040,\"journal\":{\"name\":\"Advances in Bamboo Science\",\"volume\":\"5 \",\"pages\":\"Article 100041\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bamboo Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773139123000277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139123000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作研究了致密化和外皮维护对松竹弯曲性能和热导率的影响。结果表明,与未致密的竹子相比,致密样品的抗弯性有所提高。具有外皮的致密样品显示出最高的弯曲强度。具有压缩外秆壁的样品提供了最好的结果,平均断裂模量(MOR)约为348.9MPa,弹性模量(MOE)为28.4GPa。与没有表皮和未致密样品的致密样品相比,这些值分别高出约40%和86%(MOR,17%和30%)。使用扫描电子显微镜(SEM)分析弯曲试验后试样的断裂截面,以观察裂纹在外皮和竹组织内的扩展。保持表皮增加了热导率,有表皮的致密竹子的热导率约为0.23W/m.K,比没有表皮的致密竹高12.8%,比未致密竹高22.5%。尽管热性能有所降低,但得出的结论是,保留竹皮是合理的,因为它提高了整体机械阻力,并减少了竹子加工过程中的材料损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of the outer skin on the flexural properties and thermal conductivity of densified Dendrocalamus asper bamboo

In this work, the effect of densification and the maintenance of the outer skin on the flexural properties and thermal conductivity of Dendrocalamus asper Backer ex K.Heyne bamboo was investigated. The results showed improvements in bending resistance for the densified samples compared to the un-densified bamboo. Densified samples with the outer skin showed the highest bending strength. Samples with the outer culm wall in compression offered the best results, with an average modulus of rupture (MOR) of around 348.9 MPa and modulus of elasticity (MOE) of 28.4 GPa. These values are around 40% and 86% (MOR), and 17% and 30% (MOE) higher compared to densified samples without the skin and un-densified samples, respectively. The fracture sections of specimens after bending tests were analyzed using Scanning Electron Microscopy (SEM) to visualize crack propagation within the outer skin and bamboo tissues. Maintaining the skin increases the thermal conductivity, and the densified bamboo with the skin has a thermal conductivity of around 0.23 W/m.K, 12.8% higher than the densified bamboo without skin and 22.5% higher than un-densified bamboo. Although a reduction in thermal performance was achieved, it was concluded that is reasonable to keep the bamboo skin, as it improves the overall mechanical resistance and reduces material loss during bamboo processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Physico-mechanical properties and decay fungi resistance of Dendrocalamus asper and Bambusa spinosa thermally modified in spent engine oil medium Natural geometrical variations of Italian Phyllostachys edulis bamboo culms for construction purposes Current and future habitat suitability modelling of Bambusa teres outside forest areas in Nepal under climate change scenarios Moisture ageing effects on the mechanical performance of eco-friendly sandwich panels made of aluminium skins, bamboo ring core and bio-based adhesives A novel dataset for green bamboo compressive strength analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1