拼车效率和最小车队规模建模的分析框架

Steffen Mühle
{"title":"拼车效率和最小车队规模建模的分析框架","authors":"Steffen Mühle","doi":"10.1016/j.multra.2023.100080","DOIUrl":null,"url":null,"abstract":"<div><p>Ride pooling (RP) is a transport mode using on-demand buses to combine the trips of multiple users into one vehicle. Its required fleet size and carbon emissions are quantified by the system’s efficiency. Due to the complex interplay between street network, buses, users and dispatch algorithm, efficiency case studies are available but bottom-up predictions are not. Here we close this gap using probabilistic and geometric arguments in an analytical model framework. Its modular design allows for adaptation to specific usage scenarios and provides an over-arching view of them. In a showcase on Euclidean spaces, our model quantifies how RP outperforms private cars as user demand increases. Its predicted power-law scaling is verified using a custom simulation framework, which further reveals improved scaling on real street networks and graphs with hierarchical structures. Henceforth, our work may help to identify street networks well-suited for RP, and predict key performance indicators analytically.</p></div>","PeriodicalId":100933,"journal":{"name":"Multimodal Transportation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An analytical framework for modeling ride pooling efficiency and minimum fleet size\",\"authors\":\"Steffen Mühle\",\"doi\":\"10.1016/j.multra.2023.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ride pooling (RP) is a transport mode using on-demand buses to combine the trips of multiple users into one vehicle. Its required fleet size and carbon emissions are quantified by the system’s efficiency. Due to the complex interplay between street network, buses, users and dispatch algorithm, efficiency case studies are available but bottom-up predictions are not. Here we close this gap using probabilistic and geometric arguments in an analytical model framework. Its modular design allows for adaptation to specific usage scenarios and provides an over-arching view of them. In a showcase on Euclidean spaces, our model quantifies how RP outperforms private cars as user demand increases. Its predicted power-law scaling is verified using a custom simulation framework, which further reveals improved scaling on real street networks and graphs with hierarchical structures. Henceforth, our work may help to identify street networks well-suited for RP, and predict key performance indicators analytically.</p></div>\",\"PeriodicalId\":100933,\"journal\":{\"name\":\"Multimodal Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772586323000126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772586323000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

拼车(RP)是一种使用按需公交车将多个用户的行程合并为一辆车的交通模式。其所需的车队规模和碳排放量通过系统的效率进行量化。由于街道网络、公交车、用户和调度算法之间的复杂相互作用,可以进行效率案例研究,但不能进行自下而上的预测。在这里,我们在分析模型框架中使用概率和几何参数来缩小这一差距。它的模块化设计允许适应特定的使用场景,并提供了它们的总体视图。在欧几里得空间的展示中,我们的模型量化了随着用户需求的增加,RP如何优于私家车。使用自定义仿真框架验证了其预测的幂律缩放,进一步揭示了在真实街道网络和具有分层结构的图上改进的缩放。今后,我们的工作可能有助于确定非常适合RP的街道网络,并分析预测关键性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An analytical framework for modeling ride pooling efficiency and minimum fleet size

Ride pooling (RP) is a transport mode using on-demand buses to combine the trips of multiple users into one vehicle. Its required fleet size and carbon emissions are quantified by the system’s efficiency. Due to the complex interplay between street network, buses, users and dispatch algorithm, efficiency case studies are available but bottom-up predictions are not. Here we close this gap using probabilistic and geometric arguments in an analytical model framework. Its modular design allows for adaptation to specific usage scenarios and provides an over-arching view of them. In a showcase on Euclidean spaces, our model quantifies how RP outperforms private cars as user demand increases. Its predicted power-law scaling is verified using a custom simulation framework, which further reveals improved scaling on real street networks and graphs with hierarchical structures. Henceforth, our work may help to identify street networks well-suited for RP, and predict key performance indicators analytically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
期刊最新文献
Relationship between urban traffic crashes and temporal/meteorological conditions: understanding and predicting the effects An assignment-based decomposition approach for the vehicle routing problem with backhauls An adapted savings algorithm for planning heterogeneous logistics with uncrewed aerial vehicles Catastrophic causes of truck drivers’ crashes on Brazilian highways: Mixed method analyses and crash prediction using machine learning Reinforcement learning in transportation research: Frontiers and future directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1