Christiane Kiefer , Paola Ruiz Duarte , Roswitha Schmickl , Marcus A. Koch
{"title":"拟南芥多倍体杂交种和渗入区SRK等位基因的时空多样性","authors":"Christiane Kiefer , Paola Ruiz Duarte , Roswitha Schmickl , Marcus A. Koch","doi":"10.1016/j.ppees.2023.125760","DOIUrl":null,"url":null,"abstract":"<div><p><span>Reproductive barriers and directional geneflow may play a key role in maintaining genetic gradients, thereby allowing ecological differentiation along ecological clines. In Brassicaceae, a sporophytic incompatibility system (SI) contributes to such barriers to geneflow, with the maternal component represented by a large diversity of </span><em>SRK</em> (stigma-specific S locus receptor kinase) alleles at varying frequencies and levels of dominance. Such clinal genetic gradient along an ecological gradient following a shift towards much drier and warmer conditions and also the bedrock type shifts from calcareous to silicious has been found earlier in an <span><em>Arabidopsis</em></span><span> introgression system involving </span><em>A. lyrata</em> and <em>A. arenosa</em><span>. The metapopulation system spans from the northeastern Austrian forealps northward towards the Danube river and the Bohemian massif. Here we explore diversification of population-level </span><em>SRK</em> gene pools across these hybrid <em>Arabidopsis</em> tetraploid metapopulation system and its putative parental source populations. Since it has been demonstrated that <em>A. lyrata</em> served as the maternal parent and <em>A. arenosa</em> introgressed via pollen constituting a genetic cline with decreasing contribution of <em>A. arenosa</em> genetic background, we test the hypothesis that this cline can be also explained by <em>SRK</em> allelic differentiation. A total of 603 individuals from 45 populations of introgressed and non-introgressed <em>A. lyrata</em> and <em>A. arenosa</em> across a 80 km transect were analysed for <em>SRK</em><span> allele variation. In total, 22 alleles from all four previously described dominance classes have been documented. Although there is clinal morphological and genetic variation following the introgression zone, </span><em>SRK</em> alleles do not follow this signature of the paternal taxa. Furthermore, the functional SI system is fully maintained across the transect, and crossing experiments show that there is no decrease in fitness depending on varying distances between populations along the transect studied herein. We conclude that transmission and structure of the <em>SRK</em><span> allelic gene pool contributes to the postglacial colonization success along such a pronounced ecological gradient maintaining a functional SI system and counteracting genetic depletion.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spatio-temporal diversification of SRK alleles in an Arabidopsis polyploid hybrid and introgression zone\",\"authors\":\"Christiane Kiefer , Paola Ruiz Duarte , Roswitha Schmickl , Marcus A. Koch\",\"doi\":\"10.1016/j.ppees.2023.125760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Reproductive barriers and directional geneflow may play a key role in maintaining genetic gradients, thereby allowing ecological differentiation along ecological clines. In Brassicaceae, a sporophytic incompatibility system (SI) contributes to such barriers to geneflow, with the maternal component represented by a large diversity of </span><em>SRK</em> (stigma-specific S locus receptor kinase) alleles at varying frequencies and levels of dominance. Such clinal genetic gradient along an ecological gradient following a shift towards much drier and warmer conditions and also the bedrock type shifts from calcareous to silicious has been found earlier in an <span><em>Arabidopsis</em></span><span> introgression system involving </span><em>A. lyrata</em> and <em>A. arenosa</em><span>. The metapopulation system spans from the northeastern Austrian forealps northward towards the Danube river and the Bohemian massif. Here we explore diversification of population-level </span><em>SRK</em> gene pools across these hybrid <em>Arabidopsis</em> tetraploid metapopulation system and its putative parental source populations. Since it has been demonstrated that <em>A. lyrata</em> served as the maternal parent and <em>A. arenosa</em> introgressed via pollen constituting a genetic cline with decreasing contribution of <em>A. arenosa</em> genetic background, we test the hypothesis that this cline can be also explained by <em>SRK</em> allelic differentiation. A total of 603 individuals from 45 populations of introgressed and non-introgressed <em>A. lyrata</em> and <em>A. arenosa</em> across a 80 km transect were analysed for <em>SRK</em><span> allele variation. In total, 22 alleles from all four previously described dominance classes have been documented. Although there is clinal morphological and genetic variation following the introgression zone, </span><em>SRK</em> alleles do not follow this signature of the paternal taxa. Furthermore, the functional SI system is fully maintained across the transect, and crossing experiments show that there is no decrease in fitness depending on varying distances between populations along the transect studied herein. We conclude that transmission and structure of the <em>SRK</em><span> allelic gene pool contributes to the postglacial colonization success along such a pronounced ecological gradient maintaining a functional SI system and counteracting genetic depletion.</span></p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1433831923000446\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1433831923000446","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The spatio-temporal diversification of SRK alleles in an Arabidopsis polyploid hybrid and introgression zone
Reproductive barriers and directional geneflow may play a key role in maintaining genetic gradients, thereby allowing ecological differentiation along ecological clines. In Brassicaceae, a sporophytic incompatibility system (SI) contributes to such barriers to geneflow, with the maternal component represented by a large diversity of SRK (stigma-specific S locus receptor kinase) alleles at varying frequencies and levels of dominance. Such clinal genetic gradient along an ecological gradient following a shift towards much drier and warmer conditions and also the bedrock type shifts from calcareous to silicious has been found earlier in an Arabidopsis introgression system involving A. lyrata and A. arenosa. The metapopulation system spans from the northeastern Austrian forealps northward towards the Danube river and the Bohemian massif. Here we explore diversification of population-level SRK gene pools across these hybrid Arabidopsis tetraploid metapopulation system and its putative parental source populations. Since it has been demonstrated that A. lyrata served as the maternal parent and A. arenosa introgressed via pollen constituting a genetic cline with decreasing contribution of A. arenosa genetic background, we test the hypothesis that this cline can be also explained by SRK allelic differentiation. A total of 603 individuals from 45 populations of introgressed and non-introgressed A. lyrata and A. arenosa across a 80 km transect were analysed for SRK allele variation. In total, 22 alleles from all four previously described dominance classes have been documented. Although there is clinal morphological and genetic variation following the introgression zone, SRK alleles do not follow this signature of the paternal taxa. Furthermore, the functional SI system is fully maintained across the transect, and crossing experiments show that there is no decrease in fitness depending on varying distances between populations along the transect studied herein. We conclude that transmission and structure of the SRK allelic gene pool contributes to the postglacial colonization success along such a pronounced ecological gradient maintaining a functional SI system and counteracting genetic depletion.