案例1最佳-最差缩放的R包和教程

IF 2.8 3区 经济学 Q1 ECONOMICS Journal of Choice Modelling Pub Date : 2023-03-01 DOI:10.1016/j.jocm.2022.100394
Hideo Aizaki , James Fogarty
{"title":"案例1最佳-最差缩放的R包和教程","authors":"Hideo Aizaki ,&nbsp;James Fogarty","doi":"10.1016/j.jocm.2022.100394","DOIUrl":null,"url":null,"abstract":"<div><p>Case 1 best–worst scaling (BWS1) has been used in a wide variety of research fields. BWS1 is attractive, relative to discrete choice experiments, because individual’s preferences for items can be easily measured. Despite the relative ease of implementation, BWS1 analysis still requires the use of software packages. When used in conjunction with other packages, the new and revised functions in the package <strong>support.BWS</strong> allow BWS1 analysis to be conducted using either the counting approach or the modeling approach. Additionally, a new function that simulates responses to BWS1 questions allows discipline specific BWS1 examples to be created for teaching purposes. To make it easier for novice users to implement BWS1 analysis with R, the package <strong>RcmdrPlugin.BWS1</strong>, that integrates with R Commander has been developed. A free web tutorial for BWS1 in R has also been developed. This paper explains the features of the latest version of <strong>support.BWS</strong>, along with the new package <strong>RcmdrPlugin.BWS1</strong>, and illustrates how these packages work.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"46 ","pages":"Article 100394"},"PeriodicalIF":2.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"R packages and tutorial for case 1 best–worst scaling\",\"authors\":\"Hideo Aizaki ,&nbsp;James Fogarty\",\"doi\":\"10.1016/j.jocm.2022.100394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Case 1 best–worst scaling (BWS1) has been used in a wide variety of research fields. BWS1 is attractive, relative to discrete choice experiments, because individual’s preferences for items can be easily measured. Despite the relative ease of implementation, BWS1 analysis still requires the use of software packages. When used in conjunction with other packages, the new and revised functions in the package <strong>support.BWS</strong> allow BWS1 analysis to be conducted using either the counting approach or the modeling approach. Additionally, a new function that simulates responses to BWS1 questions allows discipline specific BWS1 examples to be created for teaching purposes. To make it easier for novice users to implement BWS1 analysis with R, the package <strong>RcmdrPlugin.BWS1</strong>, that integrates with R Commander has been developed. A free web tutorial for BWS1 in R has also been developed. This paper explains the features of the latest version of <strong>support.BWS</strong>, along with the new package <strong>RcmdrPlugin.BWS1</strong>, and illustrates how these packages work.</p></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"46 \",\"pages\":\"Article 100394\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534522000513\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534522000513","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 6

摘要

案例1最佳-最差缩放(BWS1)已被广泛应用于各种研究领域。相对于离散选择实验,BWS1是有吸引力的,因为个人对物品的偏好可以很容易地测量。尽管实现相对容易,BWS1分析仍然需要使用软件包。当与其他软件包一起使用时,软件包中的新功能和修订功能提供支持。BWS允许使用计数方法或建模方法进行BWS1分析。此外,一个模拟对BWS1问题的回答的新功能允许为教学目的创建特定学科的BWS1示例。为了让新手用户更容易使用R实现BWS1分析,开发了与R Commander集成的包RcmdrPlugin.BWS1。还为R中的BWS1开发了一个免费的网络教程。本文介绍了最新版本支持的功能。BWS,以及新的包RcmdrPlugin.BWS1,并说明了这些包是如何工作的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R packages and tutorial for case 1 best–worst scaling

Case 1 best–worst scaling (BWS1) has been used in a wide variety of research fields. BWS1 is attractive, relative to discrete choice experiments, because individual’s preferences for items can be easily measured. Despite the relative ease of implementation, BWS1 analysis still requires the use of software packages. When used in conjunction with other packages, the new and revised functions in the package support.BWS allow BWS1 analysis to be conducted using either the counting approach or the modeling approach. Additionally, a new function that simulates responses to BWS1 questions allows discipline specific BWS1 examples to be created for teaching purposes. To make it easier for novice users to implement BWS1 analysis with R, the package RcmdrPlugin.BWS1, that integrates with R Commander has been developed. A free web tutorial for BWS1 in R has also been developed. This paper explains the features of the latest version of support.BWS, along with the new package RcmdrPlugin.BWS1, and illustrates how these packages work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
期刊最新文献
Editorial Board Latent class choice models with an error structure: Investigating potential unobserved associations between latent segmentation and behavior generation Model choice and framing effects: Do discrete choice modeling decisions affect loss aversion estimates? A consistent moment equations for binary probit models with endogenous variables using instrumental variables Transformation-based flexible error structures for choice modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1