使用基于模型的决策树建模偏好异质性

IF 2.8 3区 经济学 Q1 ECONOMICS Journal of Choice Modelling Pub Date : 2023-03-01 DOI:10.1016/j.jocm.2022.100393
Álvaro A. Gutiérrez-Vargas, Michel Meulders, Martina Vandebroek
{"title":"使用基于模型的决策树建模偏好异质性","authors":"Álvaro A. Gutiérrez-Vargas,&nbsp;Michel Meulders,&nbsp;Martina Vandebroek","doi":"10.1016/j.jocm.2022.100393","DOIUrl":null,"url":null,"abstract":"<div><p>This article investigates the usage of a general model-based recursive partitioning algorithm to model preference heterogeneity. We use the algorithm to grow a decision tree based on statistical tests of the stability of individuals’ preference parameters. In particular, we used a Mixed Logit (MIXL) model with alternative-specific attributes at the end leaves of the tree while using individual characteristics as partition variables. This configuration allows us to search for instabilities of the taste parameters across individuals’ characteristics. We conduct a simulation study to investigate the algorithm’s ability to recover different data generating processes with structural breaks in the taste parameters. The results show that the algorithm can correctly recover diverse tree-like data generating processes. Additionally, we applied the algorithm to stated choice data of the preferences for the environmental impact of (hypothetical) energy generation plans in Chile. The results show that the model-based decision tree fits the data better than MIXL in terms of information criteria. Moreover, we show that the derived tree structure depends on the assumptions on the parameters’ distributions. Additionally, we compare the model-based decision tree model with Latent Class (LC) models with and without within-class heterogeneity. Finally, we show that the recursive partitioning algorithm can inform the selection of variables to be included in the LC allocation models.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"46 ","pages":"Article 100393"},"PeriodicalIF":2.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling preference heterogeneity using model-based decision trees\",\"authors\":\"Álvaro A. Gutiérrez-Vargas,&nbsp;Michel Meulders,&nbsp;Martina Vandebroek\",\"doi\":\"10.1016/j.jocm.2022.100393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article investigates the usage of a general model-based recursive partitioning algorithm to model preference heterogeneity. We use the algorithm to grow a decision tree based on statistical tests of the stability of individuals’ preference parameters. In particular, we used a Mixed Logit (MIXL) model with alternative-specific attributes at the end leaves of the tree while using individual characteristics as partition variables. This configuration allows us to search for instabilities of the taste parameters across individuals’ characteristics. We conduct a simulation study to investigate the algorithm’s ability to recover different data generating processes with structural breaks in the taste parameters. The results show that the algorithm can correctly recover diverse tree-like data generating processes. Additionally, we applied the algorithm to stated choice data of the preferences for the environmental impact of (hypothetical) energy generation plans in Chile. The results show that the model-based decision tree fits the data better than MIXL in terms of information criteria. Moreover, we show that the derived tree structure depends on the assumptions on the parameters’ distributions. Additionally, we compare the model-based decision tree model with Latent Class (LC) models with and without within-class heterogeneity. Finally, we show that the recursive partitioning algorithm can inform the selection of variables to be included in the LC allocation models.</p></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"46 \",\"pages\":\"Article 100393\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534522000501\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534522000501","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种通用的基于模型的递归划分算法在偏好异质性建模中的应用。我们使用该算法在对个人偏好参数稳定性的统计测试的基础上生长决策树。特别是,我们使用了一个混合Logit(MIXL)模型,该模型在树的尾叶处具有可选的特定属性,同时使用单个特征作为分区变量。这种配置允许我们在个体特征之间搜索味觉参数的不稳定性。我们进行了一项模拟研究,以研究该算法在味觉参数出现结构断裂的情况下恢复不同数据生成过程的能力。结果表明,该算法能够正确地恢复不同的树状数据生成过程。此外,我们将该算法应用于智利(假设)能源发电计划的环境影响偏好的声明选择数据。结果表明,在信息准则方面,基于模型的决策树比MIXL更适合数据。此外,我们还证明了导出的树结构取决于对参数分布的假设。此外,我们将基于模型的决策树模型与具有和不具有类内异构性的潜在类(LC)模型进行了比较。最后,我们证明了递归划分算法可以通知要包括在LC分配模型中的变量的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling preference heterogeneity using model-based decision trees

This article investigates the usage of a general model-based recursive partitioning algorithm to model preference heterogeneity. We use the algorithm to grow a decision tree based on statistical tests of the stability of individuals’ preference parameters. In particular, we used a Mixed Logit (MIXL) model with alternative-specific attributes at the end leaves of the tree while using individual characteristics as partition variables. This configuration allows us to search for instabilities of the taste parameters across individuals’ characteristics. We conduct a simulation study to investigate the algorithm’s ability to recover different data generating processes with structural breaks in the taste parameters. The results show that the algorithm can correctly recover diverse tree-like data generating processes. Additionally, we applied the algorithm to stated choice data of the preferences for the environmental impact of (hypothetical) energy generation plans in Chile. The results show that the model-based decision tree fits the data better than MIXL in terms of information criteria. Moreover, we show that the derived tree structure depends on the assumptions on the parameters’ distributions. Additionally, we compare the model-based decision tree model with Latent Class (LC) models with and without within-class heterogeneity. Finally, we show that the recursive partitioning algorithm can inform the selection of variables to be included in the LC allocation models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
期刊最新文献
Editorial Board Latent class choice models with an error structure: Investigating potential unobserved associations between latent segmentation and behavior generation Model choice and framing effects: Do discrete choice modeling decisions affect loss aversion estimates? A consistent moment equations for binary probit models with endogenous variables using instrumental variables Transformation-based flexible error structures for choice modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1