发明、创新和新技术:太阳能海水淡化

Samantha Wijewardane , Noreddine Ghaffour
{"title":"发明、创新和新技术:太阳能海水淡化","authors":"Samantha Wijewardane ,&nbsp;Noreddine Ghaffour","doi":"10.1016/j.solcom.2023.100037","DOIUrl":null,"url":null,"abstract":"<div><p>This article is a brief review of inventions, innovations, and commercialization aspects of solar desalination technology for clean water supply. It is estimated that by the year 2025, nearly two-thirds of the global population will be affected by clean water scarcity. Solar desalination is one of the most sustainable ways of facing this global challenge with emerging technological advancements. Highly efficient interfacial solar evaporation that localizes the heat on the evaporating surface has attracted tremendous research interest within the last few years. In addition, notable innovations can be found in adsorption desalination and energy-efficient freeze desalination. The mini review is followed by a list of notable recent patents and articles. However, the list is by no means exhaustive or complete, and quite possibly some important patents and articles are not cited. The mini review and the lists support the objective of this section: to draw attention to the topic of inventions, innovations and new technologies, which can be a major contributor to the global goal of net zero carbon emissions.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"5 ","pages":"Article 100037"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inventions, innovations, and new technologies: Solar Desalination\",\"authors\":\"Samantha Wijewardane ,&nbsp;Noreddine Ghaffour\",\"doi\":\"10.1016/j.solcom.2023.100037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article is a brief review of inventions, innovations, and commercialization aspects of solar desalination technology for clean water supply. It is estimated that by the year 2025, nearly two-thirds of the global population will be affected by clean water scarcity. Solar desalination is one of the most sustainable ways of facing this global challenge with emerging technological advancements. Highly efficient interfacial solar evaporation that localizes the heat on the evaporating surface has attracted tremendous research interest within the last few years. In addition, notable innovations can be found in adsorption desalination and energy-efficient freeze desalination. The mini review is followed by a list of notable recent patents and articles. However, the list is by no means exhaustive or complete, and quite possibly some important patents and articles are not cited. The mini review and the lists support the objective of this section: to draw attention to the topic of inventions, innovations and new technologies, which can be a major contributor to the global goal of net zero carbon emissions.</p></div>\",\"PeriodicalId\":101173,\"journal\":{\"name\":\"Solar Compass\",\"volume\":\"5 \",\"pages\":\"Article 100037\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Compass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277294002300005X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294002300005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文简要回顾了太阳能海水淡化技术在清洁水供应方面的发明、创新和商业化方面。据估计,到2025年,全球近三分之二的人口将受到清洁水短缺的影响。随着技术的不断进步,太阳能海水淡化是应对这一全球挑战的最可持续的方式之一。在过去的几年里,将热量集中在蒸发表面的高效界面太阳能蒸发吸引了人们的极大研究兴趣。此外,在吸附脱盐和节能冷冻脱盐方面也有显著的创新。小评论之后是一份最近著名的专利和文章列表。然而,这份清单并不详尽或完整,很可能一些重要的专利和文章没有被引用。小型审查和清单支持本节的目标:提请注意发明、创新和新技术的主题,这可能是实现净零碳排放全球目标的主要贡献者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inventions, innovations, and new technologies: Solar Desalination

This article is a brief review of inventions, innovations, and commercialization aspects of solar desalination technology for clean water supply. It is estimated that by the year 2025, nearly two-thirds of the global population will be affected by clean water scarcity. Solar desalination is one of the most sustainable ways of facing this global challenge with emerging technological advancements. Highly efficient interfacial solar evaporation that localizes the heat on the evaporating surface has attracted tremendous research interest within the last few years. In addition, notable innovations can be found in adsorption desalination and energy-efficient freeze desalination. The mini review is followed by a list of notable recent patents and articles. However, the list is by no means exhaustive or complete, and quite possibly some important patents and articles are not cited. The mini review and the lists support the objective of this section: to draw attention to the topic of inventions, innovations and new technologies, which can be a major contributor to the global goal of net zero carbon emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation studies and experimental validation on solar multi - effect desalination system Experimental analysis on a solar photovoltaic indoor cooker integrated with an energy storage system: A positive step towards clean cooking transition for Sub-Saharan Africa Comparative analysis of bifacial and monofacial FPV system in the UK Improving optical efficiency of linear Fresnel collectors in the Sahel via position and length adjustment Integral ecology approach to life cycle assessment of solar arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1