基于超导量子电路的频率可调谐微波量子光源

Chip Pub Date : 2023-09-01 DOI:10.1016/j.chip.2023.100063
Yan Li , Zhiling Wang , Zenghui Bao , Yukai Wu , Jiahui Wang , Jize Yang , Haonan Xiong , Yipu Song , Hongyi Zhang , Luming Duan
{"title":"基于超导量子电路的频率可调谐微波量子光源","authors":"Yan Li ,&nbsp;Zhiling Wang ,&nbsp;Zenghui Bao ,&nbsp;Yukai Wu ,&nbsp;Jiahui Wang ,&nbsp;Jize Yang ,&nbsp;Haonan Xiong ,&nbsp;Yipu Song ,&nbsp;Hongyi Zhang ,&nbsp;Luming Duan","doi":"10.1016/j.chip.2023.100063","DOIUrl":null,"url":null,"abstract":"<div><p>A non-classical light source is essential for implementing a wide range of quantum information processing protocols, including quantum computing, networking, communication and metrology. In the microwave regime, propagating photonic qubits, which transfer quantum information between multiple superconducting quantum chips, serve as building blocks for large-scale quantum computers. In this context, spectral control of propagating single photons is crucial for interfacing different quantum nodes with varied frequencies and bandwidths. Here a deterministic microwave quantum light source was demonstrated based on superconducting quantum circuits that can generate propagating single photons, time-bin encoded photonic qubits and qudits. In particular, the frequency of the emitted photons can be tuned in situ as large as 200 MHz. Even though the internal quantum efficiency of the light source is sensitive to the working frequency, it is shown that the fidelity of the propagating photonic qubit can be well preserved with the time-bin encoding scheme. This work thus demonstrates a versatile approach to realizing a practical quantum light source for future distributed quantum computing.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 3","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequency-tunable microwave quantum light source based on superconducting quantum circuits\",\"authors\":\"Yan Li ,&nbsp;Zhiling Wang ,&nbsp;Zenghui Bao ,&nbsp;Yukai Wu ,&nbsp;Jiahui Wang ,&nbsp;Jize Yang ,&nbsp;Haonan Xiong ,&nbsp;Yipu Song ,&nbsp;Hongyi Zhang ,&nbsp;Luming Duan\",\"doi\":\"10.1016/j.chip.2023.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A non-classical light source is essential for implementing a wide range of quantum information processing protocols, including quantum computing, networking, communication and metrology. In the microwave regime, propagating photonic qubits, which transfer quantum information between multiple superconducting quantum chips, serve as building blocks for large-scale quantum computers. In this context, spectral control of propagating single photons is crucial for interfacing different quantum nodes with varied frequencies and bandwidths. Here a deterministic microwave quantum light source was demonstrated based on superconducting quantum circuits that can generate propagating single photons, time-bin encoded photonic qubits and qudits. In particular, the frequency of the emitted photons can be tuned in situ as large as 200 MHz. Even though the internal quantum efficiency of the light source is sensitive to the working frequency, it is shown that the fidelity of the propagating photonic qubit can be well preserved with the time-bin encoding scheme. This work thus demonstrates a versatile approach to realizing a practical quantum light source for future distributed quantum computing.</p></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"2 3\",\"pages\":\"Article 100063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472323000266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472323000266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

非经典光源对于实现广泛的量子信息处理协议至关重要,包括量子计算、网络、通信和计量。在微波领域,在多个超导量子芯片之间传输量子信息的传播光子量子位是大型量子计算机的构建块。在这种情况下,传播单光子的光谱控制对于连接具有不同频率和带宽的不同量子节点至关重要。在这里,基于超导量子电路,演示了一种确定性微波量子光源,该光源可以产生传播的单光子、时间仓编码的光子量子位和量子位。特别地,发射光子的频率可以在原位调谐到200MHz。尽管光源的内部量子效率对工作频率很敏感,但研究表明,采用时间仓编码方案可以很好地保持传播光子量子位的保真度。因此,这项工作展示了一种实现未来分布式量子计算实用量子光源的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency-tunable microwave quantum light source based on superconducting quantum circuits

A non-classical light source is essential for implementing a wide range of quantum information processing protocols, including quantum computing, networking, communication and metrology. In the microwave regime, propagating photonic qubits, which transfer quantum information between multiple superconducting quantum chips, serve as building blocks for large-scale quantum computers. In this context, spectral control of propagating single photons is crucial for interfacing different quantum nodes with varied frequencies and bandwidths. Here a deterministic microwave quantum light source was demonstrated based on superconducting quantum circuits that can generate propagating single photons, time-bin encoded photonic qubits and qudits. In particular, the frequency of the emitted photons can be tuned in situ as large as 200 MHz. Even though the internal quantum efficiency of the light source is sensitive to the working frequency, it is shown that the fidelity of the propagating photonic qubit can be well preserved with the time-bin encoding scheme. This work thus demonstrates a versatile approach to realizing a practical quantum light source for future distributed quantum computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy Suspended nanomembrane silicon photonic integrated circuits Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1