有机太阳能电池用有机小分子受体材料

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2023-10-01 DOI:10.1016/j.esci.2023.100171
Xiaojun Li , Xiaolei Kong , Guangpei Sun , Yongfang Li
{"title":"有机太阳能电池用有机小分子受体材料","authors":"Xiaojun Li ,&nbsp;Xiaolei Kong ,&nbsp;Guangpei Sun ,&nbsp;Yongfang Li","doi":"10.1016/j.esci.2023.100171","DOIUrl":null,"url":null,"abstract":"<div><p>The active layer of organic solar cells (OSCs) is composed of a <em>p</em>-type conjugated polymer as the donor and an <em>n</em>-type organic semiconductor as the acceptor. Since the report of bulk-heterojunction OSCs with soluble C<sub>60</sub> derivative PCBM as the acceptor in 1995, fullerene derivatives, including PCBM and the C<sub>70</sub> derivative PC<sub>71</sub>BM, have been the dominant acceptors in OSCs for 20 years. In 2015, the A–D–A structured small molecule acceptor (SMA) was developed, which possesses the advantages of a narrow bandgap, strong absorption in the long wavelength region, and suitable electronic energy levels, in contrast to the fullerene derivative acceptors. A–D–A SMAs boost the power conversion efficiency (PCE) of OSCs to the 10–14% level. Recently, benefiting from the innovation of A–DA′D–A structured SMAs, the PCE of OSCs has rapidly increased from 15% to 19%. In this review, the development history of <em>n</em>-type organic semiconductor acceptor materials is briefly introduced. The molecular structures and the physicochemical and photovoltaic properties of acceptors, including fullerene derivatives and narrow bandgap SMAs, are described. In particular, the effect of regulating the molecular packing and miscibility of SMAs on their photovoltaic performance is discussed. Finally, current challenges and prospects for <em>n</em>-type organic semiconductor acceptors are analyzed and discussed.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 5","pages":"Article 100171"},"PeriodicalIF":42.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Organic small molecule acceptor materials for organic solar cells\",\"authors\":\"Xiaojun Li ,&nbsp;Xiaolei Kong ,&nbsp;Guangpei Sun ,&nbsp;Yongfang Li\",\"doi\":\"10.1016/j.esci.2023.100171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The active layer of organic solar cells (OSCs) is composed of a <em>p</em>-type conjugated polymer as the donor and an <em>n</em>-type organic semiconductor as the acceptor. Since the report of bulk-heterojunction OSCs with soluble C<sub>60</sub> derivative PCBM as the acceptor in 1995, fullerene derivatives, including PCBM and the C<sub>70</sub> derivative PC<sub>71</sub>BM, have been the dominant acceptors in OSCs for 20 years. In 2015, the A–D–A structured small molecule acceptor (SMA) was developed, which possesses the advantages of a narrow bandgap, strong absorption in the long wavelength region, and suitable electronic energy levels, in contrast to the fullerene derivative acceptors. A–D–A SMAs boost the power conversion efficiency (PCE) of OSCs to the 10–14% level. Recently, benefiting from the innovation of A–DA′D–A structured SMAs, the PCE of OSCs has rapidly increased from 15% to 19%. In this review, the development history of <em>n</em>-type organic semiconductor acceptor materials is briefly introduced. The molecular structures and the physicochemical and photovoltaic properties of acceptors, including fullerene derivatives and narrow bandgap SMAs, are described. In particular, the effect of regulating the molecular packing and miscibility of SMAs on their photovoltaic performance is discussed. Finally, current challenges and prospects for <em>n</em>-type organic semiconductor acceptors are analyzed and discussed.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 5\",\"pages\":\"Article 100171\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266714172300109X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266714172300109X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

摘要

有机太阳能电池(OSCs)的活性层由作为供体的p型共轭聚合物和作为受体的n型有机半导体组成。自1995年报道以可溶性C60衍生物PCBM为受体的本体异质结OSC以来,富勒烯衍生物,包括PCBM和C70衍生物PC71BM,20年来一直是OSC的主要受体。2015年,A–D–A结构的小分子受体(SMA)被开发出来,与富勒烯衍生物受体相比,该受体具有带隙窄、在长波长区域吸收强和合适的电子能级的优点。A–D–A SMA将OSC的功率转换效率(PCE)提高到10-14%。最近,得益于A–DA′D–A结构SMA的创新,OSC的PCE从15%迅速增加到19%。本文简要介绍了n型有机半导体受主材料的发展历程。介绍了富勒烯衍生物和窄带隙SMA受体的分子结构、物理化学和光伏特性。特别讨论了调节SMA的分子堆积和混溶性对其光伏性能的影响。最后,分析和讨论了n型有机半导体受体目前面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic small molecule acceptor materials for organic solar cells

The active layer of organic solar cells (OSCs) is composed of a p-type conjugated polymer as the donor and an n-type organic semiconductor as the acceptor. Since the report of bulk-heterojunction OSCs with soluble C60 derivative PCBM as the acceptor in 1995, fullerene derivatives, including PCBM and the C70 derivative PC71BM, have been the dominant acceptors in OSCs for 20 years. In 2015, the A–D–A structured small molecule acceptor (SMA) was developed, which possesses the advantages of a narrow bandgap, strong absorption in the long wavelength region, and suitable electronic energy levels, in contrast to the fullerene derivative acceptors. A–D–A SMAs boost the power conversion efficiency (PCE) of OSCs to the 10–14% level. Recently, benefiting from the innovation of A–DA′D–A structured SMAs, the PCE of OSCs has rapidly increased from 15% to 19%. In this review, the development history of n-type organic semiconductor acceptor materials is briefly introduced. The molecular structures and the physicochemical and photovoltaic properties of acceptors, including fullerene derivatives and narrow bandgap SMAs, are described. In particular, the effect of regulating the molecular packing and miscibility of SMAs on their photovoltaic performance is discussed. Finally, current challenges and prospects for n-type organic semiconductor acceptors are analyzed and discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1